
MATLAB® Builder™ JA 2
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Builder™ JA User’s Guide

© COPYRIGHT 2006–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2006 Online only New for Version 1.0 (Release 2006b)
March 2007 Online only Revised for Version 1.1 (Release 2007a)
September 2007 Online only Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.0.1 (Release 2008a)
October 2008 Online only Revised for Version 2.0.2 (Release 2008b)
March 2009 Online only Revised for Version 2.0.3 (Release 2009a)
September 2009 Online only Revised for Version 2.0.4 (Release 2009b)
March 2010 Online only Revised for Version 2.1 (Release 2010a)
September 2010 Online only Revised for Version 2.2 (Release 2010b)
January 2011 Online only Revised for Version 2.2.1 (Release 2010bSP1)
April 2011 Online only Revised for Version 2.2.2 (Release 2011a)

Contents

Getting Started

1
Product Overview . 1-2
MATLAB® Compiler Extension . 1-2
How the MATLAB® Compiler and MATLAB® Builder JA
Products Work Together . 1-2

How Does Component Deployment Work? 1-3
Limitations of Support . 1-3

Before You Use MATLAB® Builder JA 1-4
Your Role in the Java Application Deployment Process . . . 1-4
What You Need to Know . 1-6
Required Products . 1-7
Configuring Your Environment . 1-7

Quick Start: Deploying a Component with the Hello
World Example . 1-12
About the Hello World Example . 1-12
Before Running the Hello World Example 1-13
The Hello World Example . 1-13
Building the Java Component . 1-13
Deploying Hello World On a Computer with MATLAB,
MATLAB® Compiler, and MATLAB® Builder JA
Installed . 1-16

Deploying Hello World On a Computer with Only the
MATLAB Compiler Runtime (MCR) Installed (MATLAB
Not Installed) . 1-17

The Magic Square Example . 1-18
About This Example . 1-18

Magic Square Example: MATLAB Programmer
Tasks . 1-19
Copying the Example Files . 1-20
Testing the MATLAB File You Want to Deploy 1-20
Creating the Magic Square Java Component 1-21

v

Packaging the Magic Square Java Component
(Optional) . 1-24

Copy the Package You Created (Optional) 1-27

Magic Square Example: Java Developer Tasks 1-28
Gathering Files Needed for Deployment 1-29
Testing the Java Component in a Java Application 1-30
Target or End-User Installation Without MATLAB Using
the MATLAB Compiler Runtime (MCR) 1-35

Integrating Java Classes Generated by MATLAB into a
Java Application . 1-38

Calling Class Methods from Java . 1-39
Handle Data Conversion as Needed 1-39
Build and Test . 1-40

Next Steps . 1-41

MATLAB Code Deployment

2
The MATLAB Application Deployment Products 2-2

The Application Deployment Products and the
Deployment Tool . 2-4
What Is the Difference Between the Deployment Tool and
the mcc Command Line? . 2-4

How Does MATLAB® Compiler Software Build My
Application? . 2-5

What You Should Know About the Dependency Analysis
Function (depfun) . 2-6

Compiling MEX-Files, DLLs, or Shared Libraries 2-6
The Role of the Component Technology File (CTF
Archive) . 2-7

Guidelines for Writing Deployable MATLAB Code 2-11
Compiled Applications Do Not Process MATLAB Files at
Run-Time . 2-11

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files . 2-12

vi Contents

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths 2-12

Gradually Refactor Applications That Depend on
Noncompilable Functions . 2-13

Do Not Create or Use Nonconstant Static State
Variables . 2-13

How the Deployment Products Process MATLAB
Function Signatures . 2-15
The MATLAB Function Signature . 2-15
MATLAB Programming Basics . 2-15

MATLAB Library Loading in Compiled MATLAB
Functions . 2-17

MATLAB Data Files Using Load and Save 2-19
Using Load/Save Functions to Process MATLAB Data for
Deployed Applications . 2-19

Programming

3
About the MATLAB® Builder JA API 3-3
Understanding the MATLAB® Builder JA API Data
Conversion Classes . 3-3

Automatic Conversion to MATLAB Types 3-4
Understanding Function Signatures Generated by the
MATLAB® Builder JA Product . 3-5

Adding Fields to Data Structures and Data Structure
Arrays . 3-6

Returning Data from MATLAB to Java 3-7

Importing Classes . 3-8

Creating an Instance of the Class 3-9
What Is an Instance? . 3-9
Code Fragment: Instantiating a Java Class 3-9

vii

Passing Arguments to and from Java 3-13
Format . 3-13
Manual Conversion of Data Types . 3-13
Automatic Conversion to a MATLAB Type 3-14
Specifying Optional Arguments . 3-16
Handling Return Values . 3-21

Passing Java Objects by Reference 3-27
MATLAB Array . 3-27
Wrappering and Passing Java Objects to MATLAB
Functions with MWJavaObjectRef 3-27

Handling Errors . 3-34
Error Overview . 3-34
Handling Checked Exceptions . 3-34
Handling Unchecked Exceptions . 3-37
Alternatives to Using of System.exit 3-40

Managing Native Resources . 3-41
What Are Native Resources? . 3-41
Using Garbage Collection Provided by the JVM 3-41
Using the dispose Method . 3-42
Overriding the Object.Finalize Method 3-44

Improving Data Access Using the MCR User Data
Interface and MATLAB® Builder JA 3-45
Example: Supplying Run-Time Configuration Information
for Parallel Computing Toolbox Applications 3-46

Dynamically Specifying Run-Time Options to the
MCR . 3-51
What Run-Time Options Can You Specify? 3-51
Setting and Retrieving MCR Option Values Using
MWApplication . 3-51

Handling Data Conversion Between Java and
MATLAB . 3-54
Overview . 3-54
Calling MWArray Methods . 3-54
Creating Buffered Images from a MATLAB Array 3-55

viii Contents

Setting Java Properties . 3-56
How to Set Java System Properties 3-56
Ensuring a Consistent GUI Appearance 3-56

Blocking Execution of a Console Application that
Creates Figures . 3-58
waitForFigures Method . 3-58
Code Fragment: Using waitForFigures to Block Execution
of a Console Application . 3-59

Ensuring Multi-Platform Portability 3-61

Using MCR Component Cache and
MWComponentOptions . 3-63
MWComponentOptions . 3-63
Selecting Options . 3-63
Setting Options . 3-64

Learning About Java Classes and Methods by Exploring
the Javadoc . 3-66

Sample Java Applications

4
Plot Example . 4-2
Purpose . 4-2
Procedure . 4-2

Spectral Analysis Example . 4-9
Purpose . 4-9
Procedure . 4-9

Matrix Math Example . 4-16
Purpose . 4-16
MATLAB Functions to Be Encapsulated 4-17
Understanding the getfactor Program 4-18
Procedure . 4-18

ix

Phonebook Example . 4-28
Purpose . 4-28
Procedure . 4-28

Optimization Example . 4-37
Purpose . 4-37
OptimDemo Component . 4-37
Procedure . 4-38

Web Application Example . 4-48
Example Overview . 4-48
Before You Work this Example . 4-48
Downloading the Demo Files . 4-49
Build Your Java Component . 4-50
Compiling Your Java Code . 4-51
Generating the Web Archive (WAR) File 4-51
Running the Web Deployment Demo 4-52
Using the Web Application . 4-52

Deploying a Java Component Over the Web

5
About the WebFigures Feature . 5-2
Supported Renderers for WebFigures 5-2

Preparing to Implement WebFigures for MATLAB®

Builder JA . 5-3
Your Role in the WebFigure Deployment Process 5-3
What You Need to Know to Implement WebFigures 5-5
Required Products . 5-5
Assumptions About the Examples . 5-7
Set DISPLAY on UNIX Systems . 5-8

Quick Start: Implementing a Custom WebFigure 5-9
Overview . 5-9
Setting Up the Web Server . 5-10
Creating the Default WebFigure . 5-11
Interacting with the Default WebFigure 5-12
Creating a Custom WebFigure . 5-12

x Contents

Advanced Configuration of a WebFigure 5-16
Overview . 5-16
How Do WebFigures Work? . 5-18
Installing WebFigureService . 5-19
Getting the WebFigure Object from Your Method 5-20
Attaching a WebFigure . 5-21
Using theWebFigure JSP Tag to Reference aWebFigure . . 5-23
Getting an Embeddable String That References a
WebFigure Attached to a Cache . 5-26

Working with MATLAB Figures and Images

6
Your Role in Working with Figures and Images 6-2

Creating and Modifying a MATLAB Figure 6-3
Preparing a MATLAB Figure for Export 6-3
Changing the Figure (Optional) . 6-3
Exporting the Figure . 6-4
Cleaning Up the Figure Window . 6-4
Example: Modifying and Exporting Figure Data 6-5

Working with MATLAB Figure and Image Data 6-6
For More Comprehensive Examples 6-6
Working with Figures . 6-6
Working with Images . 6-7

Creating Scalable Web Applications Using RMI

7
Using Remote Method Invocation (RMI) 7-2

Before You Use RMI . 7-4

Running the Client and Server on a Single Machine . . 7-5

xi

Running the Client and Server on Separate
Machines . 7-9

Using Native Java with Cell Arrays and Struct
Arrays . 7-10
Why Use Native Type Cell Arrays and Struct Arrays? 7-10
Before You Use Native Type Data Marshaling with Cells
and Structs . 7-11

The Native Java Cell and Struct Example 7-12

For More RMI Examples . 7-17

Troubleshooting

8
Common MATLAB® Builder JA Error Messages 8-2

Reference Information for Java

9
Requirements for the MATLAB® Builder JA Product . . 9-2
System Requirements . 9-2
Path Modifications Required for Accessibility 9-3
Limitations and Restrictions . 9-3
Settings for Environment Variables (Development
Machine) . 9-4

Data Conversion Rules . 9-9
Java to MATLAB Conversion . 9-9
MATLAB to Java Conversion . 9-11
Unsupported MATLAB Array Types 9-12

Programming Interfaces Generated by the MATLAB®

Builder JA Product . 9-13
APIs Based on MATLAB Function Signatures 9-13

xii Contents

Standard API . 9-14
mlx API . 9-16
Code Fragment: Signatures Generated for the myprimes
Example . 9-16

MWArray Class Specification . 9-18

Function Reference

10

Examples

A
Hello World (Quick Start) . A-2

Using Load and Save . A-2

Importing Classes . A-2

Instantiating a Java Class . A-2

Using MWNumericArray . A-2

Handling Data . A-2

Automatic Data Conversion . A-3

Calling MWArray Methods . A-3

Handling Errors . A-3

Handling Memory . A-4

xiii

Supplying Run-Time Configuration Information for
Parallel Computing Toolbox Applications A-4

Ensuring a Consistent GUI Appearance A-4

COM Components . A-4

Using waitForFigures to Block Execution of a Console
Application . A-4

Sample Applications (Java) . A-4

Working with WebFigures . A-5

Creating and Modifying a MATLAB Figure A-5

Working with Figures . A-5

Working with Images . A-5

Using RMI . A-5

Application Deployment Glossary

B
Glossary . B-2

Index

xiv Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Before You Use MATLAB® Builder JA” on page 1-4

• “Quick Start: Deploying a Component with the Hello World Example” on
page 1-12

• “The Magic Square Example” on page 1-18

• “Magic Square Example: MATLAB Programmer Tasks” on page 1-19

• “Magic Square Example: Java Developer Tasks” on page 1-28

• “Next Steps” on page 1-41

1 Getting Started

Product Overview

In this section...

“MATLAB® Compiler Extension” on page 1-2

“How the MATLAB® Compiler and MATLAB® Builder JA Products Work
Together” on page 1-2

“How Does Component Deployment Work?” on page 1-3

“Limitations of Support” on page 1-3

MATLAB Compiler Extension
MATLAB® Builder™ JA enables you to create Java™ classes from your
MATLAB® programs. These Java classes can be integrated into Java
programs and deployed royalty-free to desktop computers or Web servers
that do not have MATLAB installed.

When used with MATLAB Compiler™, the builder creates deployable
components that make MATLAB based computations, visualizations, and
graphical user interfaces accessible to end users of the Java programs.

When the Java program is deployed to the Web, multiple users can access it
through a Web browser.

The builder encrypts your MATLAB functions and generates a Java wrapper
around them so that they behave just like any other Java class. Java classes
created with MATLAB Builder JA are portable and run on all platforms
supported by MATLAB. See the Platform Roadmap for MATLAB® for more
information.

For information about how MATLAB® Compiler™ works, see “How Does
MATLAB Compiler Software Build My Application?”

How the MATLAB Compiler and MATLAB Builder JA
Products Work Together
The MATLAB Compiler product can compile MATLAB files, MEX-files,
MATLAB objects, or other MATLAB code. The MATLAB Builder JA product

1-2

http://www.mathworks.com/support/sysreq/roadmap.html

Product Overview

supports all the features of MATLAB, and adds support for Java™ classes,
Java objects (instances of a class), and methods. Using these products
together, you can generate the following:

• Standalone applications on UNIX®, Windows®, and Macintosh® platforms

• C and C++ shared libraries (dynamically linked libraries, or DLLs, on
Microsoft® Windows)

• Enterprise Java applications for use on any Java compatible platform

How Does Component Deployment Work?
There are two kinds of deployment:

• Installing components and setting up support for them on a development
machine so that they can be accessed by a developer who seeks to use them
in writing a Java application.

• Deploying support for the components when they are accessed at run time
on an end-user machine.

To accomplish this kind of deployment, you must make sure that the
installer you create for the application takes care of supporting the Java
components on the target machine. In general, this means the MCR must
be installed, on the target machine. You must also install the MATLAB
Builder JA component.

Note Java components created with the MATLAB Builder JA product are
dependent on the version of MATLAB with which they were built.

Limitations of Support
MATLAB Builder JA provides a wide variety of support for various Java
types and objects. However, MATLAB (MCOS) objects are not supported as
inputs or outputs for compiled or deployed functions.

1-3

1 Getting Started

Before You Use MATLAB Builder JA

In this section...

“Your Role in the Java Application Deployment Process” on page 1-4

“What You Need to Know” on page 1-6

“Required Products” on page 1-7

“Configuring Your Environment” on page 1-7

Your Role in the Java Application Deployment Process
Depending on the size of your organization, you may play one role, or many,
in the process of successfully deploying a Java application.

For example, your job may be to analyze user requirements and satisfy them
by writing a program in MATLAB code. Or, your role may be to implement the
infrastructure needed to successfully deploy a Java application to the Web.
In smaller installations, you may find one person responsible for performing
tasks associated with multiple roles.

The table Application Deployment Roles, Tasks, and References on page 1-5
describes some of the different roles, or jobs, that MATLAB Builder JA users
typically perform and which tasks they would most likely perform when
running “The Magic Square Example” on page 1-18.

1-4

Before You Use MATLAB® Builder™ JA

Application Deployment Roles, Tasks, and References

Role Tasks References

MATLAB programmer • Understand
end-user business
requirements and
the mathematical
models needed to
support them.

• WriteMATLAB code.

• Build an executable
component with
MATLAB tools
(usually with
support from a Java
developer).

• Package the
component for
distribution to end
users.

• Pass the packaged
component to the
Java developer
for rollout and
further integration
into the end-user
environment.

“Copying the Example
Files” on page 1-20

“Testing the MATLAB
File You Want to
Deploy” on page 1-20

“Creating the
Magic Square Java
Component” on page
1-21

“Packaging the
Magic Square Java
Component (Optional)”
on page 1-24

“Copy the Package You
Created (Optional)” on
page 1-27

Java developer • Write Java code
to execute the
Java package built
by the MATLAB
programmer.

• Roll out the packaged
component and
integrate it into

“Gathering Files
Needed for
Deployment” on page
1-29

“Testing the Java
Component in a Java
Application” on page
1-30

1-5

1 Getting Started

Application Deployment Roles, Tasks, and References (Continued)

Role Tasks References

the end-user
environment.

• Use the component
in enterprise Java
applications, adding
and modifying code
as needed.

• Address data
conversion issues
that may be
encountered,
according to the end
user’s specifications.

• Ensure the final Java
application executes
reliably in the end
user’s environment.

“Target or End-User
Installation Without
MATLAB Using the
MATLAB Compiler
Runtime (MCR)” on
page 1-35

“Calling Class Methods
from Java” on page 1-39

“Handle Data
Conversion as Needed”
on page 1-39

“Build and Test” on
page 1-40

End user Execute the solution
created by MATLAB
and Java developers.

Run the deployed
application (outside the
scope of this document).

What You Need to Know
The following knowledge is assumed when you use the MATLAB Builder
JA product:

• If your job function is MATLAB programmer, the following is required:

- A basic knowledge of MATLAB, and how to work with cell arrays and
structures

• If your job function is Java developer, the following is required:

- Exposure to the Java programming language

- Object-oriented programming concepts

1-6

Before You Use MATLAB® Builder™ JA

Required Products
You must install the following products to run the example described in this
chapter:

• MATLAB

• MATLAB Compiler

• MATLAB Builder JA

Configuring Your Environment

Systems Administrator

Role Knowledge Base Responsibilities

Systems
administrator

• No MATLAB experience

• Access to IT Systems

• IT expert

• Gets updates to a deployed component
or the larger application out to end
users

• Manages versions of the application
for end users

• Manages versions of the MCR

• Manages versions of the JDK

Configure your environment to work with the examples. Consult your system
administrator or Java developer before performing these tasks—some may be
unnecessary. Your administrator or programmer is often the best resource for
verifying, installing, or customizing your Java environment.

Note For updated Java system requirements, including
versions of Java Developer’s Kit (JDK) and Java Run-time
Environment (JRE), see the supported compiler page at
http://www.mathworks.com/support/compilers/current_release/.

1-7

http://www.mathworks.com/support/compilers/current_release/

1 Getting Started

Verifying Your Java Environment
You may already be running a compatible version of Java. To find out if
you have Java installed on your computer, and if it is compatible with the
MATLAB Builder JA product:

1 Open a command prompt.

2 Enter the command java -version. If Java is installed, the result looks
like this:

java version "version_number"
Java(TM) 2 Runtime Environment, Standard Edition
(build version_number.build_number
Java HotSpot(TM) Client VM

(build version_number.build_number, mixed mode)

3 Enter the command javac -version.

Note Alternately, you may have to enter %JAVA_HOME%\bin\javac
-version if you have the user environment variable JAVA_HOME defined.
For information on locating environment variables, see “Setting Up Your
Java Environment” on page 1-9.

If javac is installed, the results should look like this:

javac version_number

If java and javac are installed, go to “The Magic Square Example” on page
1-18. If not, go to “Setting Up Your Java Environment” on page 1-9.

1-8

Before You Use MATLAB® Builder™ JA

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Sun™ JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it may
be possible to run MCR-based components with non-Sun JDK’s under some
circumstances—however, compatibility is not guaranteed.

Setting Up Your Java Environment
1 Download and install the Java Developer’s Kit (JDK) from Sun
Microsystems™, Inc. if you do not yet have it installed.

The JDK is a collection of Java classes, run-time environment, compiler,
debugger, and usually source code, for a version of Java. The contents of
the JDK collectively make up a Java development environment.

The JDK includes the Java Runtime Environment (JRE), a collection of
compiled classes that makes up the Java virtual machine, a standalone
executor of the Java language, on a specific platform.

1-9

http://www.Oracle.com/servers
http://www.Oracle.com/servers

1 Getting Started

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it
may be possible to run MCR-based components with non-Sun JDK’s under
some circumstances—however, compatibility is not guaranteed.

2 Set the environment variable JAVA_HOME. This tells Java where to find your
installed JDK. from the MATLAB prompt. You can set JAVA_HOME:

• On Windows platforms:

a Right-click the My Computer icon and select Properties.

b Click the Advanced tab.

c Click Environment Variables.

d In the User Variables area, click New.

e In the New User Variable dialog box, enter JAVA_HOME for Variable
name. Enter the absolute path name where your JDK is installed
for Variable value. Here is the value of a typical JAVA_HOME
environment variable:

C:\Program Files\Java\JDK1.6.0_03

Note If JAVA_HOME already exists, select it and click Edit. Enter the
path name where your JDK is installed.

f Click OK to accept changes.

• On UNIX platforms:

1-10

Before You Use MATLAB® Builder™ JA

g Open a command prompt.

h Set JAVA_HOME as follows:

set JAVA_HOME=JDK_pathname

3 Verify that MATLAB is reading the correct value of JAVA_HOME.

a At the command prompt, type getenv JAVA_HOME.

b The response from MATLAB should be the path name you set to
JAVA_HOME in “Configuring Your Environment” on page 1-7. If not,
ensure the JDK that MATLAB is pointing to will be compatible to run
this example. Consult your system administrator if you are unsure.

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and
it may be possible to run MCR-based components with non-Sun JDK’s
under some circumstances—however, compatibility is not guaranteed.

1-11

1 Getting Started

Quick Start: Deploying a Component with the Hello World
Example

In this section...

“About the Hello World Example” on page 1-12

“Before Running the Hello World Example” on page 1-13

“The Hello World Example” on page 1-13

“Building the Java Component” on page 1-13

“Deploying Hello World On a Computer with MATLAB, MATLAB®

Compiler, and MATLAB® Builder JA Installed” on page 1-16

“Deploying Hello World On a Computer with Only the MATLAB Compiler
Runtime (MCR) Installed (MATLAB Not Installed)” on page 1-17

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the Java developer

About the Hello World Example
This section gives a very brief example of MATLAB Builder JA functionality.
For a more extensive starter example, refer to “The Magic Square Example”
on page 1-18.

1-12

Quick Start: Deploying a Component with the Hello World Example

Note The examples here use the Windows deploytool GUI, a graphical
front-end interface to MATLAB Compiler software. For information about
how to perform these tasks using the command-line interface to MATLAB
Compiler software, see the mcc reference page. For information about how to
start the Deployment Tool GUI from the command line, see the deploytool
reference page.

Before Running the Hello World Example
Before running this example, configure your environment. See “Configuring
Your Environment” on page 1-7 .

The Hello World Example
To write a function in MATLAB that displays the text hello world as output,
you define the following function as hello.m.

function hello
% This is the hello, world function written in M code

% Copyright 2010 The MathWorks, Inc.
% $Revision: 1.1.4.127 $
%

fprintf(1,'Hello, World\n');

You can find the example code for hello.m at
install_root\extern\examples\compiler\hello.m.

Building the Java Component
You create a Java application by using the Deployment Tool GUI to build a
Java class that wraps around the sample MATLAB code discussed in “The
Hello World Example” on page 1-13.

To compile or build hello using the Deployment Tool, use the following
information as you work through this example:

1-13

1 Getting Started

Project name helloprj

Class name hellocls

Package name hellopck

File to compile hello.m

Note When a component is built, the package name is the same as the

project name, by default. To change the package name, click the Actions
icon and select Settings.

1 Start MATLAB, if you have not done so already.

2 Type deploytool at the command prompt, and press Enter. The
Deployment Project dialog box opens.

The Deployment Project Dialog Box

3 Create a deployment project using the Deployment Project dialog box:

a Type the name of your project in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

1-14

Quick Start: Deploying a Component with the Hello World Example

c Select the target for the deployment project from the Target drop-down
menu.

d Click OK.

Tip You can inspect the values in the Settings dialog before building your

project. To do so, click the Action icon () on the toolbar, and then click
Settings. Verify where your src and distrib folders will be created
because you will need to reference these folders later.

4 On the Build tab:

• If you are building a Java application, click Add class. Type the name
of the class in the Class Name field, designated by the letter c:

For this class, add methods you want to compile by clicking Add files.
To add another class, click Add class.

• You may optionally add supporting files. For examples of these files,
see the deploytool Help. To add these files, in the Shared Resources
and Helper Files area:

e Click Add files/directories

f Click Open to select the file or files.

5 When you complete your changes, click the Build button ().

What Is a MATLAB Builder JA Project?

To use the MATLAB Builder JA product, you create a project, which specifies
the MATLAB code to be used in the components that you want to create. This
product supports data conversion between Java types and MATLAB types.
For more about projects and their contents, see “Anatomy of a MATLAB®

Builder JA Project” on page 1-23.

1-15

1 Getting Started

What Is a MATLAB Builder JA Component?

A component created by the MATLAB Builder JA product is a standalone
Java package (.jar file). The package contains one or more Java classes that
encapsulate MATLAB code. The classes provide methods that are callable
directly from Java code.

Deploying Hello World On a Computer with MATLAB,
MATLAB Compiler, and MATLAB Builder JA Installed
Run Hello World by entering the following from a system command shell.

1 Before proceeding, ensure you have renamed you package file to hellopck.
When a component is built, the package name is the same as the project

name, by default. To change the package name, click the Actions icon
and select Settings.

2 Navigate to the directory containing the JAR file.

3 Run the following command on:

• Windows:

java -classpath

matlabroot\toolbox\javabuilder\jar\javabuilder.jar;hellopck.jar

hellopck.hellocls

• UNIX:

% java -classpath

matlabroot/toolbox/javabuilder/jar/javabuilder.jar:hellopck.jar

hellopck.hellocls

where matlabroot is the location of your MATLAB installation.

Note The above command should be entered on one continuous line.

1-16

Quick Start: Deploying a Component with the Hello World Example

Deploying Hello World On a Computer with Only the
MATLAB Compiler Runtime (MCR) Installed (MATLAB
Not Installed)

1 Before proceeding, ensure you have renamed you package file to hellopck.
When a component is built, the package name is the same as the project

name, by default. To change the package name, click the Actions icon
and select Settings.

2 Run Hello World by entering the following from a system command shell.
Ensure you are running from a directory defined to the JAVA_HOME variable.
See “Setting Up Your Java Environment” on page 1-9 for more information.

• Windows:

java -classpath

MCRROOT\toolbox\javabuilder\jar\javabuilder.jar;hellopck.jar

hellopck.hellocls

• UNIX:

% java -classpath

MCRROOT/toolbox/javabuilder/jar/javabuilder.jar:hellopck.jar

hellopck.hellocls

where MCRROOT is the location of your MCR installation

Note The above command should be entered on one continuous line.

3 If you are running UNIX, set your system path appropriately. See
“Directories Required for Development and Testing” and “Directories
Required for Run-Time Deployment”.

1-17

1 Getting Started

The Magic Square Example

About This Example
In this section, you will step through an example of how a simple MATLAB
function can be transformed into a deployable MATLAB Builder JA
component.

The Magic Square example shows you how to create a Java component named
magicsquare which contains the magic class, a .jar file, and other files
needed to deploy your application.

The class wraps a MATLAB function, makesqr, which computes a magic
square.

Note The examples here use the Windows deploytool GUI, a graphical
front-end interface to MATLAB Compiler software. For information about
how to perform these tasks using the command-line interface to MATLAB
Compiler software, see the mcc reference page.

What Is a Magic Square?
A magic square is simply a square array of integers arranged so that their
sum is the same when added vertically, horizontally, or diagonally.

How Do I Access the Examples?
See “Copying the Example Files” on page 1-20 for information on accessing
the example code from within the product.

1-18

Magic Square Example: MATLAB® Programmer Tasks

Magic Square Example: MATLAB Programmer Tasks

In this section...

“Copying the Example Files” on page 1-20

“Testing the MATLAB File You Want to Deploy” on page 1-20

“Creating the Magic Square Java Component” on page 1-21

“Packaging the Magic Square Java Component (Optional)” on page 1-24

“Copy the Package You Created (Optional)” on page 1-27

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the Java developer

The following tasks are usually performed by the MATLAB programmer.

Key Tasks for the MATLAB Programmer

Task Reference

Prepare to run the example by
copying the MATLAB example files
into a work folder.

“Copying the Example Files” on page
1-20

Test the MATLAB code to ensure it
is suitable for deployment.

“Testing the MATLAB File You
Want to Deploy” on page 1-20

Create a Java package
(encapsulating your MATLAB
code in a Java class) by running the
Build function in deploytool.

“Creating the Magic Square Java
Component” on page 1-21

1-19

1 Getting Started

Key Tasks for the MATLAB Programmer (Continued)

Task Reference

Run the Packaging Tool to bundle
your Java component with the
additional files you selected.

“Packaging the Magic Square Java
Component (Optional)” on page 1-24

Copy the output from the Packaging
Tool (the distrib folder).

“Copy the Package You Created
(Optional)” on page 1-27

Copying the Example Files
Prepare to run the example by copying needed files into your work area as
follows:

1 Navigate to
matlabroot\toolbox\javabuilder\Examples\MagicSquareExample.
matlabroot is the MATLAB root folder (where MATLAB is installed). To
find the value of this variable on your system, type matlabroot at a
command prompt.

2 Copy the MagicSquareExample folder to a work area, for example,
D:\javabuilder_examples. Avoid using spaces in your folder
names, if possible. The example files should now reside in
D:\javabuilder_examples\MagicSquareExample.

3 Using a command prompt, navigate to D:\javabuilder_
examples\MagicSquareExample by switching to the D: drive and entering
cd \javabuilder_examples\MagicSquareExample.

Testing the MATLAB File You Want to Deploy
Normally you would first create the MATLAB file you want to deploy. In this
example, you will test a precreated MATLAB file (makesqr.m) containing the
predefined MATLAB function magic.

1 Using MATLAB, locate the makesqr.m file at
D:\javabuilder_examples\MagicSquareExample\MagicDemoComp. The
contents of the file are as follows:

1-20

Magic Square Example: MATLAB® Programmer Tasks

function y = makesqr(x)
%MAKESQR Magic square of size x.
% Y = MAKESQR(X) returns a magic square of size x.
% This file is used as an example for the MATLAB
% Builder JA product.

% Copyright 2001-2010 The MathWorks, Inc.

y = magic(x);

2 At the command prompt, enter makesqr(5) and view the results. The
output should appear as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

Creating the Magic Square Java Component
You create the Magic Square Java application by using the Deployment Tool
GUI to build a Java class that wraps around the sample MATLAB code
discussed in “Testing the MATLAB File You Want to Deploy” on page 1-20.

Use the following information as you work through this example using the
instructions in “Building the Java Component” on page 1-13:

Project Name magicsquare

Class Name magic

File to compile makesqr.m

1-21

1 Getting Started

What Happens in the Build Process

Note The MATLAB Builder JA product uses the JAVA_HOME variable to
locate the Java Software Development Kit (SDK) on your system. The
compiler uses this variable to set the version of the javac.exe command
it uses during compilation.

To create a component, the builder does the following:

1 Generates Java code to implement your component. The files are as follows:

myclass.java Contains a Java class with
methods encapsulating the
MATLAB functions specified
in the project for that class.

mycomponentMCRFactory.java Java component with first
character of mycomponent
capitalized.

myclassremote.java Contains a remotable
Java class with methods
encapsulating the MATLAB
functions specified in the
project for that class.
See Chapter 7, “Creating
Scalable Web Applications
Using RMI”.

package-info.java Javadoc package
documentation.

2 Compiles the Java code produced in step 1.

3 Generates /distrib and /src subfolders.

4 Invokes the Jar utility to package the Java class files it has created into a
Java archive file (mycomponent.jar).

For information about how MATLAB Compiler works, see “How Does
MATLAB® Compiler Software Build My Application?” on page 2-5.

1-22

Magic Square Example: MATLAB® Programmer Tasks

Anatomy of a MATLAB Builder JA Project
A builder project contains information about the files and settings needed by
the MATLAB Builder JA product to create a deployable Java component.
A project specifies information about classes and methods, including the
MATLAB functions to be included.

Classes and Methods . The builder transforms MATLAB functions that are
specified in the component’s project to methods belonging to a Java class.

When creating a component, you must provide one or more class names as
well as a component name. The class name denotes the name of the class
that encapsulates MATLAB functions.

To access the features and operations provided by the MATLAB functions,
instantiate the Java class generated by the builder, and then call the methods
that encapsulate the MATLAB functions.

Note When you add files to a project, you do not have to add any MATLAB
files for functions that are called by the functions that you add. When the
MATLAB Builder JA product builds a component, it automatically includes
any MATLAB functions called by the functions that you explicitly specify for
the component. See the “Spectral Analysis Example” on page 4-9 for a sample
application that illustrates this feature.

Naming Conventions. Typically you should specify names for components
and classes that will be clear to programmers who use your components.
For example, if you are encapsulating many MATLAB functions, it helps to
determine a scheme of function categories and to create a separate class for
each category. Also, the name of each class should be descriptive of what
the class does.

Valid characters are any alpha or numeric characters, as well as the
underscore (_) character.

1-23

1 Getting Started

Packaging the Magic Square Java Component
(Optional)
Bundling the Java component with additional files into a JAR file that can
be distributed to users is called packaging. You will perform this step using
the packaging function of deploytool. Alternately, copy the contents of the
distrib folder and the MCR Installer to a local folder of your choice. If you
are creating a shared component and want to include additional code with the
component, you must perform this step.

Note “Packaging” a component and a “Java package” are different concepts.

“Packaging” in this context refers only to the act of using MATLAB Builder
JA to bundle the Java component with associated files needed to successfully
deploy the application. A “Java package” is a collection of Java classes and
methods.

1 On the Package tab, add the MATLAB Compiler Runtime (MCR). To do
so, click Add MCR, and choose one of the two options described in the
following table.

Option What Does This Option Do? When Should I Use This
Option?

Embed the MCR in the
package

This option physically copies
the MCR Installer file into the
package you create.

• You have a limited number
of end users who deploy
a small number of
applications at sporadic
intervals

• Your users have no
intranet/network access

• Resources such as disk
space, performance, and
processing time are not
significant concerns

1-24

Magic Square Example: MATLAB® Programmer Tasks

Option What Does This Option Do? When Should I Use This
Option?

Note Distributing the
MCR Installer with each
application requires more
resources.

Invoke the MCR from a
network location

This option lets you add a link
to an MCR Installer residing
on a local area network,
allowing you to invoke the
installer over the network,
as opposed to copying the
installer physically into the
deployable package.
This option sets up a script
to install the MCR from a
specified network location,
saving time and resources
when deploying applications.

• You have a large number
of end users who deploy
applications frequently

• Your users have
intranet/network access

• Resources such as disk
space, performance,
and processing time are
significant concerns for your
organization

If you choose this option,
modify the location of the MCR
Installer, if needed. To do so,
select the Preferences link
in this dialog box, or change
the Compiler option in your
MATLAB Preferences.

Caution Before selecting
this option, consult with
your network or systems
administrator. Your
administrator may already
have selected a network
location from which to run the
MCR Installer.

1-25

1 Getting Started

For more information about the role the MCR plays in the deployment
process, see “Target or End-User Installation Without MATLAB Using the
MATLAB Compiler Runtime (MCR)” on page 1-35.

2 Next, add others files you feel may be useful to end users. To package
additional files or folders, click Add file/directories, select the file or
folder you want to package, and click Open.

3 In the Deployment Tool, click the Packaging button ().

4 For Windows, the package is a self-extracting executable. On platforms
other than Windows, the package is delivered as a .zip file. Verify that the
contents of the distrib folder contains the files you specified.

What Happens in the Packaging Process?
The packaging process creates a self-extracting executable (on Windows
platforms) or a .zip file (on platforms other than Windows). The package
contains at least the following:

• The builder component

• The MCR Installer (if the Install MCR option was selected when the
component was built)

• Documentation generated by the Sun Microsystems Javadoc tool

Note The packaging process is not available when using mcc directly.

Note For guidelines on multi-platform portability, reference “Ensuring
Multi-Platform Portability” on page 3-61.

How Does the MATLAB Builder JA Product Use JAR Files?
As of R2007b, the MATLAB Builder JA product now embeds the CTF archive
within the generated JAR file, by default. This offers convenient deployment

1-26

Magic Square Example: MATLAB® Programmer Tasks

of a single output file since all encrypted MATLAB file data is now contained
within this Java archive.

For information on CTF archive data extraction and utilization
using MWComponentOptions see “Using MCR Component Cache and
MWComponentOptions” on page 3-63.

Copy the Package You Created (Optional)
Copy the package that you created from the distrib folder to the local folder
of your choice or send them directly to the Java developer.

1-27

1 Getting Started

Magic Square Example: Java Developer Tasks

In this section...

“Gathering Files Needed for Deployment” on page 1-29

“Testing the Java Component in a Java Application” on page 1-30

“Target or End-User Installation Without MATLAB Using the MATLAB
Compiler Runtime (MCR)” on page 1-35

“Integrating Java Classes Generated by MATLAB into a Java Application”
on page 1-38

“Calling Class Methods from Java” on page 1-39

“Handle Data Conversion as Needed” on page 1-39

“Build and Test” on page 1-40

Java Developer

Role Knowledge Base Responsibilities

Java
developer

• Little to no MATLAB experience

• Moderate IT Experience

• Java expert

• Minimal access to IT systems

• Integrates deployed component with
the rest of the Java application

• Integrates deployed MATLAB Figures
with the rest of the Java application

The following tasks are usually performed by the Java developer.

1-28

Magic Square Example: Java™ Developer Tasks

Key Tasks for the Java Developer

Task Reference

Ensure you have the needed files
from the MATLAB Programmer
before proceeding.

“Gathering Files Needed for
Deployment” on page 1-29

Test the Java code by using it in a
Java application. Compile and run
the component to ensure it produces
the same results as your MATLAB
code.

“Testing the Java Component in a
Java Application” on page 1-30

Install the MATLAB Component
Runtime (MCR) and update system
paths.

“Target or End-User Installation
Without MATLAB Using the
MATLAB Compiler Runtime (MCR)”
on page 1-35

Import classes generated by the
MATLAB Builder JA product into
existing Java applications.

“Integrating Java Classes Generated
by MATLAB into a Java Application”
on page 1-38

Use built-in Java class methods to
enhance your Java application.

“Calling Class Methods from Java”
on page 1-39

Address potential data conversion
issues with differing data types.

“Handle Data Conversion as Needed”
on page 1-39

Verify your Java application works
as expected in your end user’s
deployment environment.

“Build and Test” on page 1-40

Gathering Files Needed for Deployment
Before beginning, verify you have access to the following files, created by the
MATLAB Programmer in “Copy the Package You Created (Optional)” on page
1-27. The following files are required to deploy to users who do not have a
copy of MATLAB installed:

• MCR Installer. For locations of the MCR Installer, run the mcrinstaller
command.

• Javadoc documentation

1-29

1 Getting Started

• readme.txt file

You will also want to communicate the location
of com.mathworks.toolbox.javabuilder
(matlabroot\toolbox\javabuilder\jar\javabuilder.jar). You can
browse the API Javadoc for com.mathworks.toolbox.javabuilder from the
MATLAB Help.

Testing the Java Component in a Java Application
Before deploying the created component, you need to verify that it can be used
in a Java application successfully.

First, create a small Java program that uses the component created for
your by the MATLAB Programmer (see “Packaging the Magic Square Java
Component (Optional)” on page 1-24). The example provides a sample
Java program that accomplishes this (getmagic.java now in the folder
D:\javabuilder_examples\MagicSquareExample\MagicDemoJavaApp).

The program imports the magicsquare package you created
with deploytool and the MATLAB Builder JA package
(com.mathworks.toolbox.javabuilder) and uses one of the
MATLAB Builder JA conversion classes to convert the number passed to the
program on the command line into a type that can be accepted by MATLAB,
in this case a scalar double value.

The program then creates an instance of class magic, and calls the makesqr
method on that object. Note how the MATLAB file becomes a method of
the Java class that encapsulates it. As explained in “Testing the MATLAB
File You Want to Deploy” on page 1-20, the makesqr method computes the
square using the MATLAB magic function. The source code of getmagic.java
follows, for your reference:

/* getmagic.java
* This file is used as an example for the MATLAB
* Builder JA product.
*
* Copyright 2010 The MathWorks, Inc.
*/

1-30

Magic Square Example: Java™ Developer Tasks

/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import magicsquare.*;

/*
* getmagic class computes a magic square of order N. The
* positive integer N is passed on the command line.
*/

class getmagic
{

public static void main(String[] args)
{

MWNumericArray n = null; /* Stores input value */
Object[] result = null; /* Stores the result */
magic theMagic = null; /* Stores magic */

/* class instance */

try
{

/* If no input, exit */
if (args.length == 0)
{

System.out.println("Error: must input a positive
integer");

return;
}

/* Convert and print input value*/
n = new MWNumericArray(Double.valueOf(args[0]),

MWClassID.DOUBLE);

System.out.println("Magic square of order " +
n.toString());

/* Create new magic object */
theMagic = new magic();

/* Compute magic square and print result */
result = theMagic.makesqr(1, n);
System.out.println(result[0]);

1-31

1 Getting Started

}
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
}

finally
{

/* Free native resources */
MWArray.disposeArray(n);
MWArray.disposeArray(result);
if (theMagic != null)

theMagic.dispose();
}

}
}

Ensure your current working folder is set to
D:\javabuilder_examples\MagicSquareExample as noted previously in this
example. Then, do the following:

1 Compile the Java component with the Java compiler, javac. At the
command prompt, enter one of the following commands. When entering
these commands, ensure they are entered as one continuous command. On
Windows systems, the semicolon (;) is a concatenation character. On UNIX
systems, the colon (:) is a concatenation character.

• On Windows platforms:

%JAVA_HOME%\bin\javac -classpath
matlabroot\toolbox\javabuilder

\jar\javabuilder.jar;
.\magicsquare\distrib\magicsquare.jar

.\MagicDemoJavaApp\getmagic.java

• On UNIX platforms:

$JAVA_HOME/bin/javac -classpath
.:matlabroot/toolbox/javabuilder

/jar/javabuilder.jar:
./magicsquare/distrib/magicsquare.jar

1-32

Magic Square Example: Java™ Developer Tasks

./MagicDemoJavaApp/getmagic.java

Inspect the syntax of the javac compile command on Windows platforms:

%JAVA_HOME%\bin\javac -classpath
matlabroot\toolbox\javabuilder

\jar\javabuilder.jar;
.\magicsquare\distrib\magicsquare.jar
.\MagicDemoJavaApp\getmagic.java

The components of this command are:

• %JAVA_HOME%/bin/javac — Using this command invokes the Java
compiler explicitly from the version of Java you set with JAVA_HOME (see
“Configuring Your Environment” on page 1-7).

Note %JAVA_HOME% is Windows syntax and $JAVA_HOME is UNIX syntax.

• -classpath— Using this argument allows Java to access the packages and
other files you need to compile your component.

• matlabroot\toolbox\javabuilder\jar\javabuilder.jar
— The location of the MATLAB Builder JA package file
(com.mathworks.toolbox.javabuilder).

• .\magicsquare\distrib\magicsquare.jar — The location of the
magicsquare package file you created with deploytool.

• .\MagicDemoJavaApp\getmagic.java — The location of the
getmagic.java source file.

2 When you run getmagic, you pass an input argument to Java representing
the dimension for the magic square. In this example, the value for the
dimension is 5. Run getmagic by entering one of the following java
commands at the command prompt. When entering these commands,
ensure they are entered as one continuous command. On Windows systems,
the semicolon (;) is a concatenation character. On UNIX systems, the colon
(:) is a concatenation character.

• On Windows platforms:

1-33

1 Getting Started

%JAVA_HOME%\bin\java

-classpath

.\MagicDemoJavaApp;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

.\magicsquare\distrib\magicsquare.jar

getmagic 5

• On UNIX platforms:

$JAVA_HOME/bin/java

-classpath

./MagicDemoJavaApp:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

./magicsquare/distrib/magicsquare.jar

getmagic 5

Inspect the syntax of the java command on Windows platforms:

%JAVA_HOME%\bin\java

-classpath

.\MagicDemoJavaApp;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

.\magicsquare\distrib\magicsquare.jar

getmagic 5

Note If you are running on the Mac 64-bit platform, you must add the
-d64 flag in the Java command. See “Limitations and Restrictions” on page
9-3 for more specific information.

The components of this command are:

• %JAVA_HOME%\bin\java — Using this command invokes the java run
time explicitly from the MATLAB JRE.

• -classpath— Using this argument allows Java to access the packages
and other files you need to run your application.

• .\MagicDemoJavaApp; — The location of getmagic.class. The
semicolon concatenates this file location with the following file location,
so Java can find the files needed to run your program.

• matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
— The location of the MATLAB Builder JA package file

1-34

Magic Square Example: Java™ Developer Tasks

(com.mathworks.toolbox.javabuilder). The semicolon concatenates
this file location with the following file location, so Java can find the
files needed to run your program.

• .\magicsquare\distrib\magicsquare.jar — The location of the
magicsquare package file you created with deploytool.

• getmagic 5 — Invokes the compiled getmagic application with the
command-line argument 5.

3 Verify the program output. If the program ran successfully, a magic square
of order 5 will print, matching the output of the MATLAB function you ran
in “Testing the MATLAB File You Want to Deploy” on page 1-20, as follows:

Magic square of order 5

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

Using mcrroot to Test Against the MCR
To test directly against the MCR, substitute mcrroot for
matlabroot, where mcrroot is the location where the MCR is
installed on your system. An example of an MCR root location is
D:\Applications\MATLAB\MATLAB_Compiler_Runtime\MCR_version_number.
Remember to double-quote all parts of the java command path arguments
that contain spaces.

Target or End-User Installation Without MATLAB
Using the MATLAB Compiler Runtime (MCR)
On target computers without MATLAB, install the MCR, if it is not already
present on the development machine.

1-35

1 Getting Started

About the MCR and the MCR Installer
The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable the execution of MATLAB
files on systems without an installed version of MATLAB.

In order to deploy a component, you package the MCR along with it. Before
you utilize the MCR on a system without MATLAB, run the MCR installer.

The installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

Before You Install the MCR

1 Since installing the MCR requires write access to the system registry,
ensure you have administrator privileges to run the MCR Installer.

2 The version of the MCR that runs your application on the target computer
must be compatible with the version of MATLAB Compiler that built the
component.

Caution If an MCR does not match the version of the instance of
MATLAB that built the component, an inoperable application and
unpredictable results can result.

Including the MCR installer with Your Deployment Package
Include the MCR in your deployment by using the Deployment Tool.

On the Package tab of the deploytool interface, click Add MCR.

1-36

Magic Square Example: Java™ Developer Tasks

Note For more information about additional options for including the MCR
Installer (embedding it in your package or locating the installer on a network
share), see “Packaging Your Deployment Application (Optional)” in the
MATLAB Compiler User’s Guide or in your respective Builder User’s Guide.

Installing the MCR and Setting System Paths
To install the MCR, perform the following tasks on the target machines:

1 If you added the MCR during packaging, open the package to locate the
installer (MCRInstaller.exe). Otherwise, run the command mcrinstaller
to display the locations where you can download the installer.

2 If you are running on a platform other than Windows, set the system
paths on the target machine. Setting the paths enables your application
to find the MCR.

Windows paths are set automatically. On Linux and Mac, you can use the
run script to set paths. See “Using Run Script to Set MCR Paths” in the
appendix “Using MATLAB Compiler on UNIX” in the MATLAB Compiler
User’s Guide for more information.

For More Information

If you want to... See...

• Perform basic MATLAB
Programmer tasks

• Understand how the deployment
products process your MATLAB
functions

• Understand how the deployment
products work together

• Explore guidelines about writing
deployable MATLAB code

“MATLAB Code Deployment”

1-37

1 Getting Started

If you want to... See...

Learn more about the MATLAB
Compiler Runtime (MCR)

“Working with the MCR” in the
MATLAB Compiler User’s Guide

Integrating Java Classes Generated by MATLAB into
a Java Application
If you are implementing your Java component on a computer other than the
one on which it was built:

1 Install the MATLAB Compiler Runtime on the target system. See
“Deployment Process” in the MATLAB Compiler documentation.

2 Consult the Javadoc for information on classes generated by MATLAB
classes. Reference the Javadoc from the MATLAB Builder JA product
roadmap.

3 To integrate the Java class generated by MATLAB Builder JA,software
both the component and the MWArray API need to be imported in the Java
code. Import the MATLAB libraries and the component classes into your
code with the Java import function. For example:

import com.mathworks.toolbox.javabuilder.*;
import componentname.classname; or import componentname.*;

For more information, see Chapter 3, “Programming”.

4 As with all Java classes, you must use the new function to create an
instance of a class. To create an object (theMagic) from the magic class,
the example application uses the following code:

theMagic = new magic();

For more information, see Chapter 3, “Programming”.

5 To conserve system resources and optimize performance, it is good practice
to get in the habit of destroying any instances of classes that are no longer
needed. For example, to dispose of the object theMagic, use the following
code:

1-38

http://www.mathworks.com/access/helpdesk/help/toolbox/javabuilder/javabuilder_product_page.html
http://www.mathworks.com/access/helpdesk/help/toolbox/javabuilder/javabuilder_product_page.html

Magic Square Example: Java™ Developer Tasks

theMagic.dispose();
/* Make it eligible for garbage collection */
theMagic = null;

For more information, see Chapter 3, “Programming”, in particular, “Using
the dispose Method” on page 3-42.

Calling Class Methods from Java
After you have instantiated the class, you can call a class method as you
would with any Java object. In the Magic Square example, the makesqr
method is called as shown:

result = theMagic.makesqr(1, n);

Here n is an instance of an MWArray class. Note that the first argument
expresses number of outputs (1) and succeeding arguments represent inputs
(n).

See the following code fragment for the declaration of n:

n = new MWNumericArray(Double.valueOf(args[0],
MWClassID.DOUBLE);

Note The MATLAB Builder JA product provides a rich API for integrating
the generated components. Detailed examples and complete listings of input
parameters and possible thrown exceptions can be found in the Javadoc,
available from the MATLAB Builder JA roadmap.

Handle Data Conversion as Needed
When you invoke a method on a builder component, the input parameters
received by the method must be in the MATLAB internal array format. You
can either (manually) convert them yourself within the calling program, or
pass the parameters as Java data types.

• To manually convert to one of the standard MATLAB data types, use
MWArray classes in the package com.mathworks.toolbox.javabuilder.

• If you pass them as Java data types, they are automatically converted.

1-39

1 Getting Started

How MATLAB Builder JA Handles Data
To enable Java applications to exchange data with MATLAB methods
they invoke, the builder provides an API, which is implemented as the
com.mathworks.toolbox.javabuilder.MWArray package. This package
provides a set of data conversion classes derived from the abstract class,
MWArray. Each class represents a MATLAB data type.

For more detailed information on data handling within the
product and programming with the MWArray package, see the
com.mathworks.toolbox.javabuilder.MWArray Javadoc and “About the
MATLAB® Builder JA API” on page 3-3.

Build and Test
Build and test the Java application as you would any application in your end
user’s environment. Build on what you’ve created by working with additional
classes and methods.

After you create and distribute the initial application, you will want to
continue to enhance it. Details about some of the more common tasks you will
perform as you develop your application are listed in the chapters described in
“Next Steps” on page 1-41.

Running a 64-Bit Mac Application
Before you run a 64-bit Macintosh application, you need to use the Macintosh
Application Launcher. See “Running Your 64-Bit Mac Application” in the
MATLAB Compiler User’s Guide for more information.

See “Using MATLAB Compiler on UNIX” in the MATLAB Compiler User’s
Guide for complete information about building, deploying, and testing UNIX
applications with MATLAB Compiler.

1-40

Next Steps

Next Steps
Writing Java applications that
can access Java methods that
encapsulate MATLAB code

Chapter 3, “Programming”

Sample applications that access
methods developed in MATLAB

Chapter 4, “Sample Java
Applications”

Deploying Java components over the
Web

Chapter 5, “Deploying a Java
Component Over the Web”

Reference information about
automatic data conversion rules

Chapter 9, “Reference Information
for Java”

1-41

1 Getting Started

1-42

2

MATLAB Code Deployment

• “The MATLAB Application Deployment Products” on page 2-2

• “The Application Deployment Products and the Deployment Tool” on page
2-4

• “Guidelines for Writing Deployable MATLAB Code” on page 2-11

• “How the Deployment Products Process MATLAB Function Signatures”
on page 2-15

• “MATLAB Library Loading in Compiled MATLAB Functions” on page 2-17

• “MATLAB Data Files Using Load and Save” on page 2-19

2 MATLAB® Code Deployment

The MATLAB Application Deployment Products
MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the Java developer

The following table and figure summarizes the target applications supported
by each product.

The MATLAB Suite of Application Deployment Products

Product Target Stand-
alones?

Function
Libraries?

Graphical
Apps?

Web
Apps?

WebFigures?

MATLAB
Compiler

C and C++
standalones

Yes Yes Yes No No

MATLAB
Builder NE

C# .NET
components
Visual
Basic COM
components

No Yes Yes Yes Yes

MATLAB
Builder JA

Java
components

No Yes Yes Yes Yes

MATLAB
Builder EX

Microsoft®

Excel®

add-ins

No Yes Yes No No

2-2

The MATLAB® Application Deployment Products

The MATLAB® Application Deployment Products

As this figure illustrates, each of the builder products uses the MATLAB
Compiler core code to create deployable components.

2-3

2 MATLAB® Code Deployment

The Application Deployment Products and the Deployment
Tool

In this section...

“What Is the Difference Between the Deployment Tool and the mcc
Command Line?” on page 2-4

“How Does MATLAB® Compiler Software Build My Application?” on page
2-5

“What You Should Know About the Dependency Analysis Function
(depfun)” on page 2-6

“Compiling MEX-Files, DLLs, or Shared Libraries” on page 2-6

“The Role of the Component Technology File (CTF Archive)” on page 2-7

What Is the Difference Between the Deployment Tool
and the mcc Command Line?
When you use the Deployment Tool (deploytool) GUI, you perform any
function you would invoke using the MATLAB Compiler mcc command-line
interface. The Deployment Tool interactive menus and dialogs build mcc
commands that are customized to your specification. As such, your MATLAB
code is processed the same way as if you were compiling it using mcc.

Deployment Tool advantages include:

• You perform related deployment tasks with a single intuitive GUI.

• You maintain related information in a convenient project file.

• Your project state persists between sessions.

• Your previous project loads automatically when the Deployment Tool starts.

• You load previously stored compiler projects from a prepopulated menu.

• Package applications for distribution.

2-4

The Application Deployment Products and the Deployment Tool

How Does MATLAB Compiler Software Build My
Application?
To build an application, MATLAB Compiler software performs these tasks:

1 Parses command-line arguments and classifies by type the files you provide.

2 Analyzes files for dependencies using the Dependency Analysis Function
(depfun). Dependencies affect deployability and originate from functions
called by the file. Deployability is affected by:

• File type — MATLAB, Java, MEX, and so on.

• File location — MATLAB, MATLAB toolbox, user code, and so on.

• File deployability — Whether the file is deployable outside of MATLAB

For more information about depfun, see “What You Should Know About
the Dependency Analysis Function (depfun)” on page 2-6.

3 Validates MEX-files. In particular, mexFunction entry points are verified.
For more details about MEX-file processing, see “Compiling MEX-Files,
DLLs, or Shared Libraries” on page 2-6.

4 Creates a CTF archive from the input files and their dependencies.
For more details about CTF archives see “The Role of the Component
Technology File (CTF Archive)” on page 2-7.

5 Generates target-specific wrapper code. For example, a C main function
requires a very different wrapper than the wrapper for a Java interface
class.

6 Invokes a third-party target-specific compiler to create the appropriate
binary software component (a standalone executable, a Java JAR file,
and so on).

For details about how MATLAB Compiler software builds your deployable
component, see “How Does MATLAB® Compiler Software Build My
Application?” on page 2-5.

2-5

2 MATLAB® Code Deployment

What You Should Know About the Dependency
Analysis Function (depfun)
MATLAB Compiler uses a dependency analysis function (depfun) to
determine the list of necessary files to include in the CTF package.
Sometimes, this process generates a large list of files, particularly when
MATLAB object classes exist in the compilation and depfun cannot resolve
overloaded methods at compile time. Dependency analysis also processes
include/exclude files on each pass (see the mcc flag “-a Add to Archive”).

Tip To improve compile time performance and lessen application size, prune
the path with “-N Clear Path”, “-p Add Directory to Path”. You can also
specify Toolboxes on Path in the deploytool Settings

For more information about depfun and addpath and rmpath, see “Dependency
Analysis Function (depfun) and User Interaction with the Compilation Path”.

depfun searches for executable content such as:

• MATLAB files

• P-files

• Java classes and .jar files

• .fig files

• MEX-files

depfun does not search for data files of any kind (except MAT files). You must
manually include data files in the search

Compiling MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that
depfun can find them. Doing so allows you to avoid many common compilation
problems. In particular, note that:

• Because depfun cannot examine MEX-files, DLLs, or shared libraries to
determine their dependencies, explicitly include all executable files these

2-6

The Application Deployment Products and the Deployment Tool

files require. To do so, use either the mcc -a option or the options on the
Advanced tab in the Deployment Tool under Settings.

• If you have any doubts that depfun can find a MATLAB function called by
a MEX-file, DLL, or shared library, then manually include that function.
To do so, use either the mcc -a option or by using the options on the
Advanced tab in the Deployment Tool under Settings.

• Not all functions are compatible with MATLAB Compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all
functions called from your application that you cannot deploy.

The Role of the Component Technology File (CTF
Archive)
Each application or shared library you produce using MATLAB Compiler
has an associated Component Technology File (CTF) archive. The archive
contains all the MATLAB based content (MATLAB files, MEX-files, and so
on) associated with the component.

MATLAB Compiler also embeds a CTF archive in each generated binary. The
CTF houses all deployable files. All MATLAB files encrypt in the CTF archive
using the Advanced Encryption Standard (AES) cryptosystem.

If you choose the extract the CTF archive as a separate file the files remain
encrypted. For more information on how to extract the CTF archive refer to
the references in the following table.

Information on CTF Archive Embedding/Extraction and Component
Cache

Product Refer to

MATLAB Compiler “Overriding Default CTF Archive
Embedding Using the MCR
Component Cache”

MATLAB Builder NE “Extracting the CTF Archive
Manually Using the MCR
Component Cache”

2-7

2 MATLAB® Code Deployment

Information on CTF Archive Embedding/Extraction and Component
Cache (Continued)

Product Refer to

MATLAB Builder JA “Using MCR Component Cache and
MWComponentOptions” on page
3-63

MATLAB Builder EX “Overriding Default CTF Archive
Embedding for Components Using
the MCR Component Cache”

2-8

The Application Deployment Products and the Deployment Tool

2-9

2 MATLAB® Code Deployment

Additional Details
Multiple CTF archives, such as those generated with COM, .NET, or Excel®

components, can coexist in the same user application. You cannot, however,
mix and match the MATLAB files they contain. You cannot combine
encrypted and compressed MATLAB files from multiple CTF archives into
another CTF archive and distribute them.

All the MATLAB files from a given CTF archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same
CTF archive, do not execute. If you want to generate another application
with a different mix of MATLAB files, recompile these MATLAB files into a
new CTF archive.

MATLAB Compiler deletes the CTF archive and generated binary following
a failed compilation, but only if these files did not exist before compilation
initiates. Run help mcc -K for more information.

Note CTF archives are extracted by default to
user_name\AppData\Local\Temp\userid\mcrCachen.nn.

Caution Release Engineers and Software Configuration Managers:
Do not use build procedures or processes that strip shared libraries on CTF
archives. If you do, you can possibly strip the CTF archive from the binary,
resulting in run-time errors for the driver application.

2-10

Guidelines for Writing Deployable MATLAB® Code

Guidelines for Writing Deployable MATLAB Code

In this section...

“Compiled Applications Do Not Process MATLAB Files at Run-Time” on
page 2-11

“Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files” on page 2-12

“Use ismcc and isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 2-12

“Gradually Refactor Applications That Depend on Noncompilable
Functions” on page 2-13

“Do Not Create or Use Nonconstant Static State Variables” on page 2-13

Compiled Applications Do Not Process MATLAB Files
at Run-Time
The MATLAB Compiler was designed so that you can deploy locked down
functionality. Deployable MATLAB files are suspended or frozen at the
time MATLAB Compiler encrypts them—they do not change from that point
onward. This does not mean that you cannot deploy a flexible application—it
means that you must design your application with flexibility in mind. If you
want the end user to be able to choose between two different methods, for
example, they both must be compiled in.

The MCR only works on MATLAB code that was encrypted when the
component was built. Any function or process that dynamically generates
new MATLAB code will not work against the MCR.

Some MATLAB toolboxes, such as the Neural Network Toolbox™ product,
generate MATLAB code dynamically. Because the MCR only executes
encrypted MATLAB files, and the Neural Network Toolbox generates
unencrypted MATLAB files, some functions in the Neural Network Toolbox
cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function
file cannot be deployed. HELP, for example, is dynamic and not available in

2-11

2 MATLAB® Code Deployment

deployed mode. You can use LOADLIBRARY in deployed mode if you provide
it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and
attempting to deploy it, perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.

2 Compile the MATLAB code with MATLAB Compiler, including the
generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function
handles.

If you require the ability to create MATLAB code for dynamic run-time
processing, your end-users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control
the Execution of MATLAB Files
In general, good programming practices advise against redirecting a program
search path dynamically within the code. Many developers are prone to this
behavior since it mimics the actions they usually perform on the command
line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are
fixed and cannot change. Therefore, any attempts to change these paths
(using the cd command or the addpath command) fails

If you find you cannot avoid placing addpath calls in your MATLAB code, use
ismcc and isdeployed. See the next section for details.

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB
code is deployable, and which is not. Such specification minimizes your
compilation errors and helps create more efficient, maintainable code.

2-12

Guidelines for Writing Deployable MATLAB® Code

For example, you find it unavoidable to use addpath when writing your
startup.m. Using ismcc and isdeployed, you specify when and what is
compiled and executed.

For an example of using isdeployed, see “Passing Arguments to and from
a Standalone Application”.

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing
non-compilable or non-deployable functions that use ismcc and isdeployed.
Your eventual goal is “graceful degradation” of non-deployable code. In
other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes
through a phase of perpetual rewriting, debugging, and optimization. In
some toolboxes, such as the Neural Network Toolbox product, the code goes
through a period of self-training as it reacts to various data permutations
and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a
finished state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be
deployed or for code that calls undeployable code.

Do Not Create or Use Nonconstant Static State
Variables
Avoid using the following:

• Global variables in MATLAB code

• Static variables in MEX-files

• Static variables in Java code

2-13

2 MATLAB® Code Deployment

The state of these variables is persistent and shared with everything in the
process.

When deploying applications, using persistent variables can cause problems
because the MCR process runs in a single thread. You cannot load more than
one of these non-constant, static variables into the same process. In addition,
these static variables do not work well in multithreaded applications.

When programming with builder components, you should be aware that an
instance of the MCR is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to
the MCR created by the previous instance of the same class. In short, if an
assembly contains n unique classes, there will be maximum of n instances
of MCRs created, each corresponding to one or more instances of one of the
classes.

If you must use static variables, bind them to instances. For example,
defining instance variables in a Java class is preferable to defining the
variable as static.

Note This guideline does not apply to MATLAB Builder EX. When
programming with Microsoft Excel, you can assign global variables to large
matrices that persist between calls.

2-14

How the Deployment Products Process MATLAB® Function Signatures

How the Deployment Products Process MATLAB Function
Signatures

In this section...

“The MATLAB Function Signature” on page 2-15

“MATLAB Programming Basics” on page 2-15

The MATLAB Function Signature
MATLAB supports multiple signatures for function calls.

The generic MATLAB function has the following structure:

function [Out1,Out2,...,varargout]=foo(In1,In2,...,varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

All arguments represent a specific MATLAB type.

When the compiler or builder product processes your MATLAB code, it creates
several overloaded methods that implement the MATLAB functions. Each
of these overloaded methods corresponds to a call to the generic MATLAB
function with a specific number of input arguments.

In addition to these methods, builder creates another method that defines the
return values of the MATLAB function as an input argument. This method
simulates the feval external API interface in MATLAB.

MATLAB Programming Basics

Creating a Deployable MATLAB Function
Virtually any calculation that you can create in MATLAB can be deployed, if
it resides in a function. For example:

2-15

2 MATLAB® Code Deployment

>> 1 + 1

cannot be deployed.

However, the following calculation:

function result = addSomeNumbers()
result = 1+1;

end

can be deployed because the calculation now resides in a function.

Taking Inputs into a Function

You typically pass inputs to a function. You can use primitive data type as an
input into a function.

To pass inputs, put them in parentheses. For example:

function result = addSomeNumbers(number1, number2)
result = number1 + number2;

end

2-16

MATLAB Library Loading in Compiled MATLAB Functions

MATLAB Library Loading in Compiled MATLAB Functions

Note It is important to understand the difference between the following:

• MATLAB loadlibrary function — Loads shared library into MATLAB.

• Operating system loadlibrary function — Loads specified Windows
or UNIX operating system module into the address space of the calling
process.

With MATLAB Compiler version 4.0 (R14) and later, you can use MATLAB
file prototypes as described below to load your library in a compiled
application. Loading libraries using H-file headers is not supported in
compiled applications. This behavior occurs when loadlibrary is compiled
with the header argument as in the statement:

loadlibrary(library, header)

In order to work around this issue, execute the following command at the
MATLAB command prompt:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

where mylibrarymfile is the name of a MATLAB file you would like to use
when loading this library. This step only needs to be performed once to
generate a MATLAB file for the library.

In the code that is be compiled, you can now call loadlibrary with the
following syntax:

loadlibrary(library, @mylibrarymfile, 'alias', alias)

With MATLAB Compiler versions 4.0.1 (R14+) and later, generated MATLAB
files will automatically be included in the CTF file as part of the compilation
process. For MATLAB Compiler versions 4.0 (R14) and later, include your
library MATLAB file in the compilation with the -a option with mcc.

2-17

2 MATLAB® Code Deployment

Caution With MATLAB Compiler Version 3.0 (R13SP1) and earlier, you
cannot compile calls to loadlibrary because of general restrictions and
limitations of the product.

2-18

MATLAB Data Files Using Load and Save

MATLAB Data Files Using Load and Save
If your deployed application uses MATLAB data files (MAT-files), it is helpful
to code LOAD and SAVE functions to manipulate the data and store it for later
processing.

• Use isdeployed to determine if your code is running in or out of the
MATLAB workspace.

• Specify the data file by either using WHICH (to locate its full path name)
define it relative to the location of ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted
when written to the CTF archive.

For more information about CTF archives, see “The Role of the Component
Technology File (CTF Archive)” on page 2-7.

See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB
data inside, and outside, of MATLAB.

Using Load/Save Functions to Process MATLAB Data
for Deployed Applications
The following example specifies three MATLAB data files:

• user_data.mat

• userdata/extra_data.mat

• ../externdata/extern_data.mat

1 Navigate to install_root\extern\examples\Data_Handling.

2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
'./userdata/extra_data.mat' -a
'../externdata/extern_data.mat'

2-19

2 MATLAB® Code Deployment

ex_loadsave.m

function ex_loadsave

% This example shows how to work with the

% "load/save" functions on data files in

% deployed mode. There are three source data files

% in this example.

% user_data.mat

% userdata/extra_data.mat

% ../externdata/extern_data.mat

%

% Compile this example with the mcc command:

% mcc -m ex_loadsave.m -a 'user_data.mat' -a

% './userdata/extra_data.mat'

% -a '../externdata/extern_data.mat'

% All the folders under the current main MATLAB file directory will

% be included as

% relative path to ctfroot; All other folders will have the

% folder

% structure included in the ctf archive file from root of the

% disk drive.

%

% If a data file is outside of the main MATLAB file path,

% the absolute path will be

% included in ctf and extracted under ctfroot. For example:

% Data file

% "c:\$matlabroot\examples\externdata\extern_data.mat"

% will be added into ctf and extracted to

% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".

%

% All mat/data files are unchanged after mcc runs. There is

% no excryption on these user included data files. They are

% included in the ctf archive.

%

% The target data file is:

% ./output/saved_data.mat

% When writing the file to local disk, do not save any files

% under ctfroot since it may be refreshed and deleted

% when the application isnext started.

2-20

MATLAB Data Files Using Load and Save

%==== load data file =============================

if isdeployed

% In deployed mode, all file under CTFRoot in the path are loaded

% by full path name or relative to $ctfroot.

% LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));

% LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));

LOADFILENAME1=which(fullfile('user_data.mat'));

LOADFILENAME2=which(fullfile('extra_data.mat'));

% For external data file, full path will be added into ctf;

% you don't need specify the full path to find the file.

LOADFILENAME3=which(fullfile('extern_data.mat'));

else

%running the code in MATLAB

LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','user_data.mat');

LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','userdata','extra_data.mat');

LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',

'externdata','extern_data.mat');

end

% Load the data file from current working directory

disp(['Load A from : ',LOADFILENAME1]);

load(LOADFILENAME1,'data1');

disp('A= ');

disp(data1);

% Load the data file from sub directory

disp(['Load B from : ',LOADFILENAME2]);

load(LOADFILENAME2,'data2');

disp('B= ');

disp(data2);

% Load extern data outside of current working directory

disp(['Load extern data from : ',LOADFILENAME3]);

load(LOADFILENAME3);

disp('ext_data= ');

disp(ext_data);

%==== multiple the data matrix by 2 ==============

2-21

2 MATLAB® Code Deployment

result = data1*data2;

disp('A * B = ');

disp(result);

%==== save the new data to a new file ===========

SAVEPATH=strcat(pwd,filesep,'output');

if (~isdir(SAVEPATH))

mkdir(SAVEPATH);

end

SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

disp(['Save the A * B result to : ',SAVEFILENAME]);

save(SAVEFILENAME, 'result');

2-22

3

Programming

To access a Java component built and packaged by the MATLAB Builder JA
product, you must first unpackage and install components so you can use
them on a particular machine. See Chapter 1, “Getting Started” for more
information.

• “About the MATLAB® Builder JA API” on page 3-3

• “Importing Classes ” on page 3-8

• “Creating an Instance of the Class” on page 3-9

• “Passing Arguments to and from Java” on page 3-13

• “Passing Java Objects by Reference” on page 3-27

• “Handling Errors” on page 3-34

• “Managing Native Resources” on page 3-41

• “Improving Data Access Using the MCR User Data Interface and
MATLAB® Builder JA” on page 3-45

• “Dynamically Specifying Run-Time Options to the MCR” on page 3-51

• “Handling Data Conversion Between Java and MATLAB” on page 3-54

• “Setting Java Properties” on page 3-56

• “Blocking Execution of a Console Application that Creates Figures” on
page 3-58

• “Ensuring Multi-Platform Portability” on page 3-61

• “Using MCR Component Cache and MWComponentOptions” on page 3-63

• “Learning About Java Classes and Methods by Exploring the Javadoc”
on page 3-66

3 Programming

Note For examples of these tasks, see Chapter 4, “Sample Java Applications”.

For information about deploying your application after you complete these
tasks, see “How Does Component Deployment Work?” on page 1-3.

3-2

About the MATLAB® Builder™ JA API

About the MATLAB Builder JA API

In this section...

“Understanding the MATLAB® Builder JA API Data Conversion Classes”
on page 3-3

“Automatic Conversion to MATLAB Types” on page 3-4

“Understanding Function Signatures Generated by the MATLAB® Builder
JA Product” on page 3-5

“Adding Fields to Data Structures and Data Structure Arrays” on page 3-6

“Returning Data from MATLAB to Java” on page 3-7

Understanding the MATLAB Builder JA API Data
Conversion Classes
When writing your Java application, you can represent your data using
objects of any of the data conversion classes. Alternatively, you can use
standard Java data types and objects.

The data conversion classes are built as a class hierarchy that represents the
major MATLAB array types.

Note This discussion provides conceptual information about the classes.
For details, see com.mathworks.toolbox.javabuilder in the product
“Documentation Set”.

This discussion assumes you have a working knowledge of the Java
programming language and the Java Software Developer’s Kit (SDK). This
is not intended to be a discussion on how to program in Java. Refer to the
documentation that came with your Java SDK for general programming
information.

3-3

3 Programming

Overview of Classes and Methods in the Data Conversion
Class Hierarchy
The root of the data conversion class hierarchy is the MWArray abstract
class. The MWArray class has the following subclasses representing the
major MATLAB types: MWNumericArray, MWLogicalArray, MWCharArray,
MWCellArray, and MWStructArray.

Each subclass stores a reference to a native MATLAB array of that type.
Each class provides constructors and a basic set of methods for accessing
the underlying array’s properties and data. To be specific, MWArray and the
classes derived from MWArray provide the following:

• Constructors and finalizers to instantiate and dispose of MATLAB arrays

• get and set methods to read and write the array data

• Methods to identify properties of the array

• Comparison methods to test the equality or order of the array

• Conversion methods to convert to other data types

Advantage of Using Data Conversion Classes
The MWArray data conversion classes let you pass native type parameters
directly without using explicit data conversion. If you pass the same array
frequently, you might improve the performance of your program by storing
the array in an instance of one of the MWArray subclasses.

Automatic Conversion to MATLAB Types

Note Because the conversion process is automatic (in most cases), you do not
need to understand the conversion process to pass and return arguments with
MATLAB Builder JA components.

When you pass an MWArray instance as an input argument, the encapsulated
MATLAB array is passed directly to the method being called.

In contrast, if your code uses a native Java primitive or array as an input
parameter, the builder converts it to an instance of the appropriate MWArray

3-4

About the MATLAB® Builder™ JA API

class before it is passed to the method. The builder can convert any Java
string, numeric type, or any multidimensional array of these types to an
appropriate MWArray type, using its data conversion rules. See “Data
Conversion Rules” on page 9-9 for a list of all the data types that are
supported along with their equivalent types in MATLAB.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

Note There are some data types commonly used in MATLAB that are
not available as native Java types. Examples are cell arrays and arrays of
complex numbers. Represent these array types as instances of MWCellArray
and MWNumericArray, respectively.

Understanding Function Signatures Generated by the
MATLAB Builder JA Product
The Java programming language now supports optional function arguments
in the way that MATLAB does with varargin and varargout. To support this
feature of MATLAB, the builder generates a single overloaded Java method
that accommodates any number of input arguments. This behavior is an
enhancement over previous versions of varargin support that only handled a
limited number of arguments.

Note In addition to handling optional function arguments, the overloaded
Java methods that wrap MATLAB functions handle data conversion. See
“Automatic Conversion to MATLAB Types” on page 3-4 for more details.

Understanding MATLAB Function Signatures
As background, recall that the generic MATLAB function has the following
structure:

function [Out1, Out2, ..., varargout]=
foo(In1, In2, ..., varargin)

3-5

3 Programming

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

Each argument represents a MATLAB type. When you include the varargin
or varargout argument, you can specify any number of inputs or outputs
beyond the ones that are explicitly declared.

Overloaded Methods in Java That Encapsulate MATLAB Code
When the MATLAB Builder JA product encapsulates your MATLAB code, it
creates an overloaded method that implements the MATLAB functions. This
overloaded method corresponds to a call to the generic MATLAB function for
each combination of the possible number and type of input arguments.

In addition to encapsulating input arguments, the builder creates another
method, which represents the output arguments, or return values, of the
MATLAB function. This additional overloaded method takes care of return
values for the encapsulated MATLAB function. This method of encapsulating
the information about return values simulates the mlx interface in the
MATLAB Compiler product.

These overloaded methods are called the standard interface (encapsulating
input arguments) and the mlx interface (encapsulating return values). See
“Programming Interfaces Generated by the MATLAB® Builder JA Product”
on page 9-13 for details.

Adding Fields to Data Structures and Data Structure
Arrays
When adding fields to data structures and data structure arrays, do so
using standard programming techniques. Do not use the set command as a
shortcut.

For examples of how to correctly add fields to data structures and data
structure arrays, see the programming examples in Chapter 4, “Sample Java
Applications”.

3-6

About the MATLAB® Builder™ JA API

Returning Data from MATLAB to Java
All data returned from a method coded in MATLAB is passed as an instance
of the appropriate MWArray subclass. For example, a MATLAB cell array is
returned to the Java application as an MWCellArray object.

Return data is not converted to a Java type. If you choose to use a Java type,
you must convert to that type using the toArray method of the MWArray
subclass to which the return data belongs.

3-7

3 Programming

Importing Classes
To use a component generated by the MATLAB Builder JA product:

1 Import MATLAB libraries with the Java import function, for example:

import com.mathworks.toolbox.javabuilder.*;

2 Import the component classes created by the builder, for example:

import com.mathworks.componentname.classname;

Tip It is important to note the difference between the component
and the package names. The component name is the last part of
the full package name, and is what is used in the .JAR file (and
the embedded CTF file within the JAR). For example, in mcc -W
java:com.mathworks.demos.HelloDemo hello.m, the component name is
demos and the package name is com.mathworks.demos.

Note When you use the MATLAB Builder JA product to create classes,
you must create those classes on the same operating system to which you
are deploying them for development (or for use by end users running an
application). For example, if your goal is to deploy an application to end users
to run on Windows, you must create the Java classes with the MATLAB
Builder JA product running on Windows.

The reason for this limitation is that although the .jar file itself might be
platform independent, the .jar file is dependent on the embedded .ctf file,
which is intrinsically platform dependent. It is possible to make your .ctf file
platform independent in certain circumstances; see “Ensuring Multi-Platform
Portability” on page 3-61 for more details.

3-8

Creating an Instance of the Class

Creating an Instance of the Class

In this section...

“What Is an Instance?” on page 3-9

“Code Fragment: Instantiating a Java Class” on page 3-9

What Is an Instance?
With a MATLAB Java class, it is necessary first to create an instance of the
class, since the methods are non-static.

Suppose you build a component named MyComponent with a class named
MyClass. Here is an example of creating an instance of the MyClass class:

MyClass instance = new MyClass();

Code Fragment: Instantiating a Java Class
The following Java code shows how to create an instance of a class that
was built with MATLAB Builder JA. The application uses a Java class that
encapsulates a MATLAB function, myprimes.

/*
* UseMyClass.java uses MyClass
*/

/* Import all com.mathworks.toolbox.javabuilder classes */
import com.mathworks.toolbox.javabuilder.*;

/* Import all com.mycompany.mycomponent classes */
import com.mycompany.mycomponent.*;

/*
* UseMyClass
*/

public class UseMyClass
{

/** Constructs a new UseMyClass */
public UseMyClass()

3-9

3 Programming

{
super();

}

/* Returns an array containing the primes between 0 and n */
public double[] getPrimes(int n) throws MWException
{

MyClass Class = null;
Object[] y = null;

try
{

Class = new MyClass ();
y = Class.myprimes(1, new Double((double)n));
/* The above signature returns outputs in an

object array. You must know the output
type to know what type to cast. */

return (double[])((MWArray)y[0]).getData();
}

catch (MWException e) {
// something went wrong while
// initializing the component - the
// MWException's message contains more information

}

finally
{

MWArray.disposeArray(y);
if (Class != null)
Class.dispose();

}
}

}

The import statements at the beginning of the program import packages that
define all the classes that the program requires. These classes are defined in
javabuilder.* and mycomponent.*; the latter defines the class myClass.

The following statement instantiates the class myclass:

3-10

Creating an Instance of the Class

Class = new myClass();

The following statement calls the class method myprimes:

y = Class.myprimes(1, new Double((double)n));

The sample code passes a java.lang.Double to the myprimes method. The
java.lang.Double is automatically converted to the double data type
required by the encapsulated MATLAB myprimes function.

When myprimes executes, it finds all prime numbers between 0 and the input
value and returns them in a MATLAB double array. This array is returned
to the Java program as an MWNumericArray with its MWClassID property set
to MWClassID.DOUBLE.

The myprimes method encapsulates the myprimes function.

myprimes Function
The code for myprimes is as follows:

function p = myprimes(n)
% MYPRIMES Returns the primes between 0 and n.
% P = MYPRIMES(N) Returns the primes between 0 and n.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2010 The MathWorks, Inc.

if length(n) ~= 1
error('N must be a scalar');

end

if n < 2
p = zeros(1,0);
return

end

p = 1:2:n;
q = length(p);
p(1) = 2;

3-11

3 Programming

for k = 3:2:sqrt(n)
if p((k+1)/2)

p(((k*k+1)/2):k:q) = 0;
end

end

p = (p(p>0));

3-12

Passing Arguments to and from Java™

Passing Arguments to and from Java

In this section...

“Format” on page 3-13

“Manual Conversion of Data Types” on page 3-13

“Automatic Conversion to a MATLAB Type” on page 3-14

“Specifying Optional Arguments” on page 3-16

“Handling Return Values” on page 3-21

Format
When you invoke a method on a MATLAB Builder JA component, the input
arguments received by the method must be in the MATLAB internal array
format. You can either convert them yourself within the calling program,
or pass the arguments as Java data types, which are then automatically
converted by the calling mechanism.

To convert them yourself, use instances of the MWArray classes; in this case
you are using manual conversion. Storing your data using the classes and
data types defined in the Java language means that you are relying on
automatic conversion. Most likely, you will use a combination of manual and
automatic conversion.

Manual Conversion of Data Types
To manually convert to one of the standard MATLAB data types, use the
MWArray data conversion classes provided by the builder. For class reference
and usage information, see the com.mathworks.toolbox.javabuilder
package.

Code Fragment: Using MWNumericArray
The Magic Square example (“The Magic Square Example” on page 1-18)
exemplifies manual conversion. The following code fragment from that
program shows a java.lang.Double argument that is converted to an
MWNumericArray type that can be used by the MATLAB function without
further conversion:

3-13

3 Programming

MWNumericArray dims = null;
dims = new MWNumericArray(Double.valueOf(args[0]),

MWClassID.DOUBLE);

result = theMagic.makesqr(1, dims);

Code Fragment: Passing an MWArray. This example constructs an
MWNumericArray of type MWClassID.DOUBLE. The call to myprimes passes the
number of outputs, 1, and the MWNumericArray, x:

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

MATLAB Builder JA product converts the MWNumericArray object to a
MATLAB scalar double to pass to the MATLAB function.

Automatic Conversion to a MATLAB Type
When passing an argument only a small number of times, it is usually just
as efficient to pass a primitive Java type or object. In this case, the calling
mechanism converts the data for you into an equivalent MATLAB type.

For instance, either of the following Java types would be automatically
converted to the MATLAB double type:

• A Java double primitive

• An object of class java.lang.Double

For reference information about data conversion (tables showing each Java
type along with its converted MATLAB type, and each MATLAB type with its
converted Java type), see “Data Conversion Rules” on page 9-9.

Code Fragment: Automatic Data Conversion
When calling the makesqrmethod used in the getmagic application, you could
construct an object of type MWNumericArray. Doing so would be an example
of manual conversion. Instead, you could rely on automatic conversion, as
shown in the following code fragment:

3-14

Passing Arguments to and from Java™

result = M.makesqr(1, arg[0]);

In this case, a Java double is passed as arg[0].

Here is another example:

result = theFourier.plotfft(3, data, new Double(interval));

In this Java statement, the third argument is of type java.lang.Double.
According to conversion rules, the java.lang.Double automatically converts
to a MATLAB 1-by-1 double array.

Code Fragment: Passing a Java Double Object
The example calls the myprimes method with two arguments. The first
specifies the number of arguments to return. The second is an object of class
java.lang.Double that passes the one data input to myprimes.

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));

This second argument is converted to a MATLAB 1-by-1 double array, as
required by the MATLAB function. This is the default conversion rule for
java.lang.Double.

Code Fragment: Passing an MWArray
This example constructs an MWNumericArray of type MWClassID.DOUBLE. The
call to myprimes passes the number of outputs, 1, and the MWNumericArray, x.

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

builder converts the MWNumericArray object to a MATLAB scalar double to
pass to the MATLAB function.

3-15

3 Programming

Code Fragment: Calling MWArray Methods
The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

For example, the following code fragment calls the constructor for the
MWNumericArray class with a Java double as the input argument:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

The builder converts the input argument to an instance of MWNumericArray,
with a ClassID property of MWClassID.DOUBLE. This MWNumericArray object
is the equivalent of a MATLAB 1-by-1 double array.

When you run this example, the result is as follows:

Array A is of type double

Changing the Default by Specifying the Type
When calling an MWArray class method constructor, supplying a specific data
type causes the MATLAB Builder JA product to convert to that type instead
of the default.

For example, in the following code fragment, the code specifies that A should
be constructed as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the result is as follows:

Array A is of type int16

Specifying Optional Arguments
So far, the examples have not used MATLAB functions that have varargin or
varargout arguments. Consider the following MATLAB function:

3-16

Passing Arguments to and from Java™

function y = mysum(varargin)
% MYSUM Returns the sum of the inputs.
% Y = MYSUM(VARARGIN) Returns the sum of the inputs.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2010 The MathWorks, Inc.

y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a
varargin argument, which means that the caller can specify any number of
inputs to the function. The result is returned as a scalar double.

Code Fragment: Passing Variable Numbers of Inputs
The MATLAB Builder JA product generates a Java interface to this function
as follows:

/* mlx interface - List version*/
public void mysum(List lhs, List rhs)

throws MWException
{

(implementation omitted)
}
/* mlx interface - Array version*/
public void mysum(Object[] lhs, Object[] rhs)

throws MWException
{

(implementation omitted)
}

/* standard interface - no inputs */
public Object[] mysum(int nargout) throws MWException
{

(implementation omitted)
}

/* standard interface - variable inputs */
public Object[] mysum(int nargout, Object varargin)

3-17

3 Programming

throws MWException
{

(implementation omitted)
}

In all cases, the varargin argument is passed as type Object. This lets
you provide any number of inputs in the form of an array of Object, that is
Object[], and the contents of this array are passed to the compiled MATLAB
function in the order in which they appear in the array. Here is an example of
how you might use the mysum method in a Java program:

public double getsum(double[] vals) throws MWException
{

myclass cls = null;
Object[] x = {vals};
Object[] y = null;

try
{

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

In this example, an Object array of length 1 is created and initialized with
a reference to the supplied double array. This argument is passed to the
mysum method. The result is known to be a scalar double, so the code returns
this double value with the statement:

return ((MWNumericArray)y[0]).getDouble(1);

3-18

Passing Arguments to and from Java™

Cast the return value to MWNumericArray and invoke the getDouble(int)
method to return the first element in the array as a primitive double value.

Code Fragment: Passing Array Inputs. The next example performs
a more general calculation:

public double getsum(Object[] vals) throws MWException
{

myclass cls = null;
Object[] x = null;
Object[] y = null;

try
{

x = new Object[vals.length];
for (int i = 0; i < vals.length; i++)

x[i] = new MWNumericArray(vals[i], MWClassID.DOUBLE);

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}
finally
{

MWArray.disposeArray(x);
MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

This version of getsum takes an array of Object as input and converts each
value to a double array. The list of double arrays is then passed to the mysum
function, where it calculates the total sum of each input array.

Code Fragment: Passing a Variable Number of Outputs
When present, varargout arguments are handled in the same way that
varargin arguments are handled. Consider the following MATLAB function:

function varargout = randvectors

3-19

3 Programming

% RANDVECTORS Returns a list of random vectors.
% VARARGOUT = RANDVECTORS Returns a list of random
% vectors such that the length of the ith vector = i.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2010 The MathWorks, Inc.

for i=1:nargout
varargout{i} = rand(1, i);

end

This function returns a list of random double vectors such that the length of
the ith vector is equal to i. The MATLAB Compiler product generates a Java
interface to this function as follows:

/* mlx interface - List version */
public void randvectors(List lhs, List rhs) throws MWException

{
(implementation omitted)

}
/* mlx interface Array version */
public void randvectors(Object[] lhs,

Object[] rhs) throws MWException
{

(implementation omitted)
}
/* Standard interface no inputs*/
public Object[] randvectors(int nargout) throws MWException
{

(implementation omitted)
}

Code Fragment: Passing Optional Arguments with the Standard
Interface. Here is one way to use the randvectors method in a Java
program:

public double[][] getrandvectors(int n) throws MWException
{

myclass cls = null;

3-20

Passing Arguments to and from Java™

Object[] y = null;

try
{

cls = new myclass();
y = cls.randvectors(n);
double[][] ret = new double[y.length][];

for (int i = 0; i < y.length; i++)
ret[i] = (double[])((MWArray)y[i]).getData();

return ret;
}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The getrandvectors method returns a two-dimensional double array with
a triangular structure. The length of the ith row equals i. Such arrays are
commonly referred to as jagged arrays. Jagged arrays are easily supported in
Java because a Java matrix is just an array of arrays.

Handling Return Values
The previous examples used the fact that you knew the type and
dimensionality of the output argument. In the case that this information is
unknown, or can vary (as is possible in MATLAB programming), the code
that calls the method might need to query the type and dimensionality of
the output arguments.

There are several ways to do this. Do one of the following:

• Use reflection support in the Java language to query any object for its type.

• Use several methods provided by the MWArray class to query information
about the underlying MATLAB array.

3-21

3 Programming

• Coercing to a specific type using the toTypeArray methods.

Code Fragment: Using Java Reflection
This code sample calls the myprimes method, and then determines the type
using reflection. The example assumes that the output is returned as a
numeric matrix but the exact numeric type is unknown.

public void getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
Object a = ((MWArray)y[0]).toArray();

if (a instanceof double[][])
{

double[][] x = (double[][])a;

/* (do something with x...) */
}

else if (a instanceof float[][])
{

float[][] x = (float[][])a;

/* (do something with x...) */
}

else if (a instanceof int[][])
{

int[][] x = (int[][])a;

/* (do something with x...) */
}

3-22

Passing Arguments to and from Java™

else if (a instanceof long[][])
{

long[][] x = (long[][])a;

/* (do something with x...) */
}

else if (a instanceof short[][])
{

short[][] x = (short[][])a;

/* (do something with x...) */
}

else if (a instanceof byte[][])
{

byte[][] x = (byte[][])a;

/* (do something with x...) */
}

else
{

throw new MWException(
"Bad type returned from myprimes");

}
}

This example uses the toArray method to return a Java primitive array
representing the underlying MATLAB array. The toArray method works just
like getData in the previous examples, except that the returned array has the
same dimensionality as the underlying MATLAB array.

Code Fragment: Using MWArray Query
The next example uses the MWArray classID method to determine the type
of the underlying MATLAB array. It also checks the dimensionality by
calling numberOfDimensions. If any unexpected information is returned, an
exception is thrown. It then checks the MWClassID and processes the array
accordingly.

3-23

3 Programming

public void getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
MWClassID clsid = ((MWArray)y[0]).classID();

if (!clsid.isNumeric() ||
((MWArray)y[0]).numberOfDimensions() != 2)

{
throw new MWException("Bad type

returned from myprimes");
}

if (clsid == MWClassID.DOUBLE)
{

double[][] x = (double[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.SINGLE)
{

float[][] x = (float[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT32 ||
clsid == MWClassID.UINT32)

{
int[][] x = (int[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

3-24

Passing Arguments to and from Java™

else if (clsid == MWClassID.INT64 ||
clsid == MWClassID.UINT64)

{
long[][] x = (long[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT16 ||
clsid == MWClassID.UINT16)

{
short[][] x = (short[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT8 ||
clsid == MWClassID.UINT8)

{
byte[][] x = (byte[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

}
finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Code Fragment: Using toType Array Methods
The next example demonstrates how you can coerce or force data to a specified
numeric type by invoking any of the toTypeArray methods. These methods
return an array of Java types matching the primitive type specified in the
name of the called method. The data is coerced or forced to the primitive type

3-25

3 Programming

specified in the method name. Note that when using these methods, data will
be truncated when needed to allow conformance to the specified data type.

Object results = null;
try {

// call a compiled MATLAB function
results = myobject.myfunction(2);

// first output is known to be a numeric matrix
MWArray resultA = (MWNumericArray) results[0];

double[][] a = (double[][]) resultA.toDoubleArray();

// second output is known to be
// a 3-dimensional numeric array
MWArray resultB = (MWNumericArray) results[1];

Int[][][] b = (Int[][][]) resultB.toIntArray();
}
finally {

MWArray.disposeArray(results);
}

3-26

Passing Java™ Objects by Reference

Passing Java Objects by Reference

In this section...

“MATLAB Array” on page 3-27

“Wrappering and Passing Java Objects to MATLAB Functions with
MWJavaObjectRef” on page 3-27

MATLAB Array
MWJavaObjectRef, a special subclass of MWArray, can be used to create a
MATLAB array that references Java objects. For detailed usage information
on this class, constructor, and associated methods, see the MWJavaObjectRef
page in the Javadoc or search for MWJavaObjectRef in the MATLAB Help
browser Search field.

Wrappering and Passing Java Objects to MATLAB
Functions with MWJavaObjectRef
You can create a MATLAB code wrapper around Java objects using
MWJavaObjectRef. Using this technique, you can pass objects by reference
to MATLAB functions, clone a Java object inside a MATLAB Builder JA
component, as well as perform other object marshaling specific to the
MATLAB Compiler product. The examples in this section present some
common use cases.

Code Fragment: Passing a Java Object into a MATLAB Builder
JA Component
To pass an object into a MATLAB Builder JA component:

1 Use MWJavaObjectRef to wrap your object.

2 Pass your object to a MATLAB function. For example:

/* Create an object */

java.util.Hashtable<String,Integer> hash =

new java.util.Hashtable<String,Integer>();

hash.put("One", 1);

3-27

../MWArrayAPI/com/mathworks/toolbox/javabuilder/MWJavaObjectRef.html

3 Programming

hash.put("Two", 2);

System.out.println("hash: ");

System.out.println(hash.toString());

/* Create a MWJavaObjectRef to wrap this object */

origRef = new MWJavaObjectRef(hash);

/* Pass it to an MATLAB function that lists its methods, etc */

result = theComponent.displayObj(1, origRef);

MWArray.disposeArray(origRef);

For reference, here is the source code for displayObj.m:

displayObj.m.

function className = displayObj(h)

disp('---------------------------');
disp('Entering MATLAB function')
h
className = class(h)
whos('h')
methods(h)

disp('Leaving MATLAB function')
disp('---------------------------');

Code Fragment: Cloning an Object Inside a Builder Component
You can also use MWJavaObjectRef to clone an object inside a MATLAB
Builder JA component. Continuing with the example in “Code Fragment:
Passing a Java Object into a MATLAB® Builder JA Component” on page
3-27, do the following:

1 Add to the original hash.

2 Clone the object.

3 (Optional) Continue to add items to each copy. For example:

3-28

Passing Java™ Objects by Reference

origRef = new MWJavaObjectRef(hash);

System.out.println("hash:");

System.out.println(hash.toString());

result = theComponent.addToHash(1, origRef);

outputRef = (MWJavaObjectRef)result[0];

/* We can typecheck that the reference contains a */

/* Hashtable but not <String,Integer>; */

/* this can cause issues if we get a Hashtable<wrong,wrong>. */

java.util.Hashtable<String, Integer> outHash =

(java.util.Hashtable<String,Integer>)(outputRef.get());

/* We've added items to the original hash, cloned it, */

/* then added items to each copy */

System.out.println("hash:");

System.out.println(hash.toString());

System.out.println("outHash:");

System.out.println(outHash.toString());

For reference, here is the source code for addToHash.m:

addToHash.m.

function h2 = addToHash(h)

%ADDTOHASH Add elements to a java.util.Hashtable<String, Integer>

% This file is used as an example for the

% MATLAB Builder JA product.

% Copyright 2001-2010 The MathWorks, Inc.

% $Revision: 1.1.4.109 $ $Date: 2011/02/15 12:34:23 $

% Validate input

if ~isa(h,'java.util.Hashtable')

error('addToHash:IncorrectType', ...

'addToHash expects a java.util.Hashtable');

end

% Add an item

h.put('From MATLAB',12);

3-29

3 Programming

% Clone the Hashtable and add items to both resulting objects

h2 = h.clone();

h.put('Orig',20);

h2.put('Clone',21);

Code Fragment: Passing a Date into a Component and Getting
a Date from a Component
In addition to passing in created objects, as in “Code Fragment: Passing
a Java Object into a MATLAB® Builder JA Component” on page 3-27,
you can also use MWJavaObjectRef to pass in Java utility objects such as
java.util.date. To do so, perform the following steps:

1 Get the current date and time using the Java object java.util.date.

2 Create an instance of MWJavaObjectRef in which to wrap the Java object.

3 Pass it to an MATLAB function that performs further processing, such as
nextWeek.m. For example:

/* Get the current date and time */

java.util.Date nowDate = new java.util.Date();

System.out.println("nowDate:");

System.out.println(nowDate.toString());

/* Create a MWJavaObjectRef to wrap this object */

origRef = new MWJavaObjectRef(nowDate);

/* Pass it to a MATLAB function that calculates one week */

/* in the future */

result = theComponent.nextWeek(1, origRef);

outputRef = (MWJavaObjectRef)result[0];

java.util.Date nextWeekDate =

(java.util.Date)outputRef.get();

System.out.println("nextWeekDate:");

System.out.println(nextWeekDate.toString());

For reference, here is the source code for nextWeek.m:

3-30

Passing Java™ Objects by Reference

nextWeek.m.

function nextWeekDate = nextWeek(nowDate)

%NEXTWEEK Given one Java Date, calculate another

% one week in the future

% This file is used as an example for the

% MATLAB Builder JA product.

% Copyright 2001-2010 The MathWorks, Inc.

% $Revision: 1.1.4.109 $ $Date: 2011/02/15 12:34:23 $

% Validate input

if ~isa(nowDate,'java.util.Date')

error('nextWeekDate:IncorrectType', ...

'nextWeekDate expects a java.util.Date');

end

% Use java.util.Calendar to calculate one week later

% than the supplied

% java.util.Date

cal = java.util.Calendar.getInstance();

cal.setTime(nowDate);

cal.add(java.util.Calendar.DAY_OF_MONTH, 7);

nextWeekDate = cal.getTime();

Returning Java Objects Using unwrapJavaObjectRefs
If you want actual Java objects returned from a component (without the
MATLAB wrappering), use unwrapJavaObjectRefs.

This method recursively connects a single MWJavaObjectRef or a
multidimensional array of MWJavaObjectRef objects to a reference or array
of references.

The following code snippets show two examples of calling
unwrapJavaObjectRefs:

Code Snippet: Returning a Single Reference or Reference to an Array
of Objects with unwrapJavaObjectRefs.

Hashtable<String,Integer> myHash =

3-31

3 Programming

new Hashtable<String,Integer>();
myHash.put("a", new Integer(3));
myHash.put("b", new Integer(5));
MWJavaObjectRef A =

new MWJavaObjectRef(new Integer(12));
System.out.println("A referenced the object: "

+ MWJavaObjectRef.unwrapJavaObjectRefs(A));

MWJavaObjectRef B = new MWJavaObjectRef(myHash);
Object bObj = (Object)B;
System.out.println("B referenced the object: "

+ MWJavaObjectRef.unwrapJavaObjectRefs(bObj))

Produces the following output:

A referenced the object: 12
B referenced the object: {b=5, a=3}

Code Snippet: Returning an Array of References with
unwrapJavaObjectRefs.

MWJavaObjectRef A =
new MWJavaObjectRef(new Integer(12));

MWJavaObjectRef B =
new MWJavaObjectRef(new Integer(104));

Object[] refArr = new Object[2];
refArr[0] = A;
refArr[1] = B;
Object[] objArr =

MWJavaObjectRef.unwrapJavaObjectRefs(refArr);
System.out.println("refArr referenced the objects: " +

objArr[0] + " and " + objArr[1]);

Produces the following output:

refArr referenced the objects: 12 and 104

3-32

Passing Java™ Objects by Reference

Optimization Example Using MWJavaObjectRef
For a full example of how to use MWJavaObjectRef to create a reference to
a Java object and pass it to a component, see “Optimization Example” on
page 4-37.

3-33

3 Programming

Handling Errors

In this section...

“Error Overview” on page 3-34

“Handling Checked Exceptions” on page 3-34

“Handling Unchecked Exceptions” on page 3-37

“Alternatives to Using of System.exit” on page 3-40

Error Overview
Errors that occur during execution of a MATLAB function or during data
conversion are signaled by a standard Java exception. This includes MATLAB
run-time errors as well as errors in your MATLAB code.

In general, there are two types of exceptions in Java: checked exceptions
and unchecked exceptions.

Handling Checked Exceptions
Checked exceptions must be declared as thrown by a method using the Java
language throws clause. MATLAB Builder JA components support one
checked exception: com.mathworks.toolbox.javabuilder.MWException.
This exception class inherits from java.lang.Exception and is thrown by
every MATLAB Compiler generated Java method to signal that an error has
occurred during the call. All normal MATLAB run-time errors, as well as
user-created errors (e.g., a calling error in your MATLAB code) are manifested
as MWExceptions.

The Java interface to each MATLAB function declares itself as throwing an
MWException using the throws clause. For example, the myprimes MATLAB
function shown previously has the following interface:

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */

3-34

Handling Errors

public void myprimes(Object[] lhs, Object[] rhs)
throws MWException

{
(implementation omitted)

}
/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/
public Object[] myprimes(int nargout, Object n)

throws MWException
{

(implementation omitted)
}

Any method that calls myprimes must do one of two things:

• Catch and handle the MWException.

• Allow the calling program to catch it.

The following two sections provide examples of each.

Code Fragment: Handling an Exception in the Called Function
The getprimes example shown here uses the first of these methods. This
method handles the exception itself, and does not need to include a throws
clause at the start.

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

3-35

3 Programming

}

/* Catches the exception thrown by myprimes */
catch (MWException e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Note that in this case, it is the programmer’s responsibility to return
something reasonable from the method in case of an error.

The finally clause in the example contains code that executes after all other
processing in the try block is executed. This code executes whether or not an
exception occurs or a control flow statement like return or break is executed.
It is common practice to include any cleanup code that must execute before
leaving the function in a finally block. The documentation examples use
finally blocks in all the code samples to free native resources that were
allocated in the method.

For more information on freeing resources, see “Managing Native Resources”
on page 3-41.

Code Fragment: Handling an Exception in the Calling Function
In this next example, the method that calls myprimes declares that it throws
an MWException:

public double[] getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

3-36

Handling Errors

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

Handling Unchecked Exceptions
Several types of unchecked exceptions can also occur during the course of
execution. Unchecked exceptions are Java exceptions that do not need to be
explicitly declared with a throws clause. The MWArray API classes all throw
unchecked exceptions.

All unchecked exceptions thrown by MWArray and its subclasses are subclasses
of java.lang.RuntimeException. The following exceptions can be thrown
by MWArray:

• java.lang.RuntimeException

• java.lang.ArrayStoreException

• java.lang.NullPointerException

• java.lang.IndexOutOfBoundsException

• java.lang.NegativeArraySizeException

This list represents the most likely exceptions. Others might be added in
the future.

3-37

3 Programming

Code Fragment: Catching General Exceptions
You can easily rewrite the getprimes example to catch any exception that
can occur during the method call and data conversion. Just change the catch
clause to catch a general java.lang.Exception.

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by anyone */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Code Fragment: Catching Multiple Exception Types
This second, and more general, variant of this example differentiates between
an exception generated in a compiled method call and all other exception
types by introducing two catch clauses as follows:

public double[] getprimes(int n)
{

3-38

Handling Errors

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by myprimes */
catch (MWException e)
{

System.out.println("Exception in MATLAB call: " +
e.toString());

return new double[0];
}

/* Catches all other exceptions */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The order of the catch clauses here is important. Because MWException is a
subclass of Exception, the catch clause for MWException must occur before
the catch clause for Exception. If the order is reversed, the MWException
catch clause will never execute.

3-39

3 Programming

Alternatives to Using of System.exit
Any Java application that uses a component generated using MATLAB
Builder JA should avoid any direct or indirect calls to System.exit.

Any direct or indirect call to System.exit will result in the JVM shutting
down in an abnormal fashion. This may result in system deadlocks.

Using System.exit also causes the java process to exit unpredictably.

Java programs using Swing components are most likely to invoke
System.exit. Here are a few ways to avoid it:

• Use public interface WindowConstants.DISPOSE_ON_CLOSE method as an
alternative to WindowConstants.EXIT_ON_CLOSE as input to the JFrame
class setDefaultCloseOperation method.

• If you want to provide an Exit button in your GUI that terminates your
application, instead of calling System.exit in the ActionListener for the
button, call the dispose method on JFrame.

3-40

Managing Native Resources

Managing Native Resources

In this section...

“What Are Native Resources?” on page 3-41

“Using Garbage Collection Provided by the JVM” on page 3-41

“Using the dispose Method” on page 3-42

“Overriding the Object.Finalize Method” on page 3-44

What Are Native Resources?
When your code accesses Java classes created by the MATLAB Builder JA
product, your program uses native resources, which exist outside the control
of the Java Virtual Machine (JVM).

Specifically, each MWArray data conversion class is a wrapper class that
encapsulates a MATLAB mxArray. The encapsulated MATLAB array
allocates resources from the native memory heap.

Note Native arrays should always be explicitly freed. Because the Java
wrapper is small and the mxArray is relatively large, the JVM memory
manager may not call the garbage collector before the native memory becomes
exhausted or badly fragmented.

Using Garbage Collection Provided by the JVM
When you create a new instance of a Java class, the JVM allocates and
initializes the new object. When this object goes out of scope, or becomes
otherwise unreachable, it becomes eligible for garbage collection by the JVM.
The memory allocated by the object is eventually freed when the garbage
collector is run.

When you instantiate MWArray classes, the encapsulated MATLAB also
allocates space for native resources, but these resources are not visible to the
JVM and are not eligible for garbage collection by the JVM. These resources
are not released by the class finalizer until the JVM determines that it is
appropriate to run the garbage collector.

3-41

3 Programming

The resources allocated by MWArray objects can be quite large and can quickly
exhaust your available memory. To avoid exhausting the native memory
heap, MWArray objects should be explicitly freed as soon as possible by the
application that creates them.

Using the dispose Method
The best technique for freeing resources for classes created by the MATLAB
Builder JA product is to call the dispose method explicitly. Any Java object,
including an MWArray object, has a dispose method.

The MWArray classes also have a finalize method, called a finalizer, that
calls dispose. Although you can think of the MWArray finalizer as a kind of
safety net for the cases when you do not call dispose explicitly, keep in mind
that you cannot determine exactly when the JVM calls the finalizer, and the
JVM might not discover memory that should be freed.

Code Fragment: Using dispose
The following example allocates an approximate 8 MB native array. To
the JVM, the size of the wrapped object is just a few bytes (the size of an
MWNumericArray instance) and thus not of significant size to trigger the
garbage collector. This example shows why it is good practice to free the
MWArray explicitly.

/* Allocate a huge array */
int[] dims = {1000, 1000};
MWNumericArray a = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);
.
. (use the array)
.

/* Dispose of native resources */
a.dispose();

/* Make it eligible for garbage collection */
a = null;

3-42

Managing Native Resources

The statement a.dispose() frees the memory allocated by both the managed
wrapper and the native MATLAB array.

The MWArray class provides two disposal methods: dispose and
disposeArray. The disposeArray method is more general in that it disposes
of either a single MWArray or an array of arrays of type MWArray.

Code Fragment: Using try-finally to Ensure Resources Are
Freed
Typically, the best way to call the dispose method is from a finally clause
in a try-finally block. This technique ensures that all native resources
are freed before exiting the method, even if an exception is thrown at some
point before the cleanup code.

Code Fragment: Using dispose in a finally Clause.

This example shows the use of dispose in a finally clause:

/* Allocate a huge array */
MWNumericArray a;
try
{

int[] dims = {1000, 1000};
a = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);
.
. (use the array)
.

}

/* Dispose of native resources */
finally
{

a.dispose();
/* Make it eligible for garbage collection */
a = null;

}

3-43

3 Programming

Overriding the Object.Finalize Method
You can also override the Object.Finalize method to help clean up native
resources just before garbage collection of the managed object. Refer to your
Java language reference documentation for detailed information on how to
override this method.

3-44

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ JA

Improving Data Access Using the MCR User Data Interface
and MATLAB Builder JA

This feature provides a lightweight interface for easily accessing MCR data.
It allows data to be shared between an MCR instance, the MATLAB code
running on that MCR, and the wrapper code that created the MCR. Through
calls to the MCR User Data interface API, you access MCR data through
creation of a per-MCR-instance associative array of mxArrays, consisting of a
mapping from string keys to mxArray values. Reasons for doing this include,
but are not limited to:

• You need to supply run–time configuration information to a client running
an application created with the Parallel Computing Toolbox. Configuration
information may be supplied (and change) on a per-execution basis. For
example, two instances of the same application may run simultaneously
with different configuration files.

• You want to initialize the MCR with constant values that can be accessed
by all your MATLAB applications

• You want to set up a global workspace — a global variable or variables that
MATLAB and your client can access

• You want to store the state of any variable or group of variables

MATLAB Builder JA software supports per-MCR instance state access
through an object-oriented API. Unlike MATLAB Compilersoftware, access
to a per-MCR instance state is optional, rather than on by default. You can
access this state by adding setmcruserdata.m and getmcruserdata.m to your
deployment project or by specifying them on the command line. Alternatively,
you use a helper function to call these methods as demonstrated in “Example:
Supplying Run-Time Configuration Information for Parallel Computing
Toolbox Applications” on page 3-46.

For more information, see “Improving Data Access Using the MCR User Data
Interface” in the MATLAB Compiler User’s Guide.

3-45

3 Programming

Example: Supplying Run-Time Configuration
Information for Parallel Computing Toolbox
Applications
Following is a complete example of how you can use the MCR User Data
Interface as a mechanism to specify a configuration .mat file for Parallel
Computing Toolbox applications.

Step 1: Write Your PCT Code

1 Compile sample_pct.m in MATLAB. By default, the code uses the local
scheduler, starts the workers, and evaluates the result.

function speedup = sample_pct (n)
warning off all;
tic
if(ischar(n))

n=str2double(n);
end
for ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time1 =toc;
matlabpool('open',4);
tic
parfor ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time2 =toc;
disp(['Normal loop times: ' num2str(time1) ...

',parallel loop time: ' num2str(time2)]);
disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

' times faster than normal']);
matlabpool('close','force');
disp('done');
speedup = (time1/time2);

2 Run the code as follows:

a = sample_pct(200)

3-46

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ JA

3 Verify that you get the following results;

Starting matlabpool using the 'local'
configuration ... connected to 4 labs.

Normal loop times: 1.4625, parallel loop time: 0.82891
parallel speedup: 1.7643 times faster than normal
Sending a stop signal to all the labs ... stopped.
Did not find any pre-existing parallel jobs created
by matlabpool.
done
a =

1.7643

Step 2: Set the Parallel Computing Toolbox Configuration
In order to compile MATLAB code to a Java package and utilize the Parallel
Computing Toolbox, the mcruserdata must be set directly from MATLAB.
There is no Java API available to access the MCRUserdata as there is for C
and C++ applications built with MATLAB Compiler.

To set the mcruserdata from MATLAB, create an init function in your Java
class. This is a separate MATLAB function that uses setmcruserdata to set
the Parallel Computing Toolbox configuration once. You then call your other
functions to utilize the Parallel Computing Toolbox functions.

Create the following init function:

function init_sample_pct
% Set the Parallel Configuration file:
if(isdeployed)

[matfile, matpath,c] = uigetfile('*.mat');
% let the USER select file

setmcruserdata('ParallelConfigurationFile',[matpath matfile]);
end

Step 3: Compile Your Function with the Deployment Tool or
the Command Line
You can compile your function from the command line by entering the
following:

3-47

3 Programming

mcc -S -W 'java:parallelComponent,PctClass' init_sample_pct.m sample_pct.m

Alternately, you can use the Deployment Tool as follows:

1 Follow the steps in “Creating the Magic Square Java Component” on page
1-21 to compile your application. When the compilation finishes, a new
folder (with the same name as the project) is created. This folder contains
two subfolders: distrib and src.

Project Name parallelComponent

Class Name PctClass

File to Compile pct_sample.m and
init_pct_sample.m

2 To deploy the compiled application, copy the distrib folder, which contains
the following, to your end users. The packaging function of deploytool
offers a convenient way to do this.

• parallelComponent.jar

• javabuilder.jar

• MCR installer

• MAT file containing cluster configuration information

Note The end-user’s target machine must have access to the cluster.

Step 4: Write the Java Driver Application
Write the following Java driver application to use the component, as follows,
using a Java-compatible IDE such as Eclipse™:

import com.mathworks.toolbox.javabuilder.*;
import parallelComponent.*;

public class JavaParallelClass
{
public static void main(String[] args)

3-48

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ JA

{
MWArray A = null;
PctClass C = null;
Object[] B = null;
try
{
C = new PctClass();
/* Set up the MCR with Parallel Data */
C.init_sample_pct();
A = new MWNumericArray(200);
B = C.sample_pct(1, A);
System.out.println(" The Speed Up was:" + B[0]);

}
catch (Exception e)
{
System.out.println("The error is " + e.toString());

}
finally
{
MWArray.disposeArray(A);
C.dispose();

}
}

}

The output is as follows:

(UIGETFILE brings up the window to select the MAT file)
Starting matlabpool using the 'myconfig' configuration

... connected to 4 labs.
Normal loop times: 2.6641, parallel loop time: 1.2568
parallel speedup: 2.1198 times faster than normal
Sending a stop signal to all the labs ... stopped.
Did not find any pre-existing parallel jobs created

by matlabpool.
done
The Speed Up was:2.1198

3-49

3 Programming

Compiling and Running the Application Without Using an IDE. If you
are not using an IDE, compile the application using command-line Java, as
follows:

Note Enter these commands on a single line, using the semi-colon as a
delimiter.

javac -classpath .;C:\pct_compile\javaApp\parallelComponent.jar;
install_root/toolbox/javabuilder/jar/javabuilder.jar

JavaParallelClass.java

Run the application from the command-line, as follows:

java -classpath .;C:\pct_compile\javaApp\parallelComponent.jar;
install_root/toolbox/javabuilder/jar/javabuilder.jar

JavaParallelClass

3-50

Dynamically Specifying Run-Time Options to the MCR

Dynamically Specifying Run-Time Options to the MCR

In this section...

“What Run-Time Options Can You Specify?” on page 3-51

“Setting and Retrieving MCR Option Values Using MWApplication” on
page 3-51

What Run-Time Options Can You Specify?
As of R2009a, you can pass MCR run-time options -nojvm, -nodisplay,
and -logfile to MATLAB Builder JA from the client application using two
classes in javabuilder.jar:

• MWApplication

• MWMCROption

Setting and Retrieving MCR Option Values Using
MWApplication
The MWApplication class provides several static methods to set MCR option
values and also to retrieve them. The following table lists static methods
supported by this class.

MWApplication Static Methods Purpose

MWApplication.initialize(MWMCROption... options); Passes MCR options (see
“Specifying Run-Time Options
Using MWMCROption” on page
3-52)

MWApplication.isMCRInitialized(); Returns true if MCR is
initialized; otherwise returns
false

MWApplication.isMCRJVMEnabled(); Returns true if MCR is launched
with JVM; otherwise returns
false

3-51

3 Programming

MWApplication Static Methods Purpose

MWApplication.isMCRNoDisplaySet(); Returns true if
MWMCROption.NODISPLAY is
used in MWApplication.
initialize

Note false is always returned
on Windows systems since
the -nodisplay option is not
supported on Windows systems.

MWApplication.getMCRLogfileName(); Retrieves the name of the log file

Specifying Run-Time Options Using MWMCROption
MWApplication.initialize takes zero or more MWMCROptions.

Calling MWApplication.initialize() without any inputs launches the MCR
with the following default values.

You must call MWApplication.initialize() before performing any other
processing.

These options are all write-once, read-only properties.

MCR Run-Time Option Default Values

-nojvm false

-logfile null

-nodisplay false

Note If there are no MCR options being passed, you do not need to use
MWApplication.initialize since initializing a MATLAB Builder JA
component initializes the MCR with default options.

3-52

Dynamically Specifying Run-Time Options to the MCR

Use the following static members of MWMCROption to represent the MCR
options you want to modify.

MWMCROption Static
Members

Purpose

MWMCROption.NOJVM Launches the MCR without a Java Virtual
Machine (JVM). When this option is used,
the JVM launched by the client application is
unaffected. The value of this option determines
whether or not the MCR should attach itself to
the JVM launched by the client application.

MWMCROption.NODISPLAY Launches the MCR without display functionality.

MWMCROption.logFile
("logfile.dat")

Allows you to specify a log file name (must be
passed with a log file name).

Example: Passing and Retrieving MCR Option Values from a Java
Application. Following is an example of how MCR option values are passed
and retrieved from a client-side Java application:

MWApplication.initialize(MWMCROption.NOJVM,
MWMCROption.logFile("logfile.dat"),MWMCROption.NODISPLAY);

System.out.println(MWApplication.getMCRLogfileName());
System.out.println(MWApplication.isMCRInitialized());
System.out.println(MWApplication.isMCRJVMEnabled());
System.out.println(MWApplication.isMCRNoDisplaySet()); //UNIX

//Following is the initialization
// of MATLAB Builder JA
// component
myclass cls = new myclass();
cls.hello();

3-53

3 Programming

Handling Data Conversion Between Java and MATLAB

In this section...

“Overview” on page 3-54

“Calling MWArray Methods” on page 3-54

“Creating Buffered Images from a MATLAB Array” on page 3-55

Overview
The call signature for a method that encapsulates a MATLAB function uses
one of the MATLAB data conversion classes to pass arguments and return
output. When you call any such method, all input arguments not derived from
one of the MWArray classes are converted by the builder to the correct MWArray
type before being passed to the MATLAB method.

For example, consider the following Java statement:

result = theFourier.plotfft(3, data, new Double(interval));

The third argument is of type java.lang.Double, which converts to a
MATLAB 1-by-1 double array.

Calling MWArray Methods
The conversion rules apply not only when calling your own methods,
but also when calling constructors and factory methods belonging to the
MWArray classes. For example, the following code calls the constructor for the
MWNumericArray class with a Java double input. The MATLAB Builder JA
product converts the Java double input to an instance of MWNumericArray
having a ClassID property of MWClassID.DOUBLE. This is the equivalent of a
MATLAB 1-by-1 double array.

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

3-54

Handling Data Conversion Between Java™ and MATLAB®

Array A is of type double

Specifying the Type
There is an exception: if you supply a specific data type in the same
constructor, the MATLAB Builder JA product converts to that type rather
than following the default conversion rules. Here, the code specifies that A
should be constructed as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

Array A is of type int16

Creating Buffered Images from a MATLAB Array
Use the renderArrayData method to:

• Create a buffered image from data in a given MATLAB array.

• Verify the array is of three dimensions (height, width, and color component).

• Verify the color component order is red, green, and blue.

Search on renderArrayData in the Javadoc for information on input
parameters, return values, exceptions thrown, and examples.

3-55

3 Programming

Setting Java Properties

In this section...

“How to Set Java System Properties” on page 3-56

“Ensuring a Consistent GUI Appearance” on page 3-56

How to Set Java System Properties
Set Java system properties in one of two ways:

• In the Java statement. Use the syntax: java -Dpropertyname=value,
where propertyname is the name of the Java system property you want to
set and value is the value to which you want the property set.

• In the Java code. Insert the following statement in your Java code near the
top of the main function, before you initialize any Java components:

System.setProperty(key,value)

key is the name of the Java system property you want to set, and value
is the value to which you want the property set.

Ensuring a Consistent GUI Appearance
After developing your initial GUI using the MATLAB Builder JA product,
subsequent GUIs that you develop may inherit properties of the MATLAB
GUI, rather than properties of your initial design. To preserve your original
look and feel, set the mathworks.DisableSetLookAndFeel Java system
property to true.

Code Fragment: Setting DisableSetLookAndFeel
The following are examples of how to set mathworks.DisableSetLookAndFeel
using the techniques in “How to Set Java System Properties” on page 3-56:

• In the Java statement:

java -classpath X:/mypath/tomy/javabuilder.jar
-Dmathworks.DisableSetLookAndFeel=true

• In the Java code:

3-56

Setting Java™ Properties

Class A {

main () {

System.getProperties().set("mathworks.DisableSetLookAndFeel","true");

foo f = newFoo();

}

}

3-57

3 Programming

Blocking Execution of a Console Application that Creates
Figures

In this section...

“waitForFigures Method” on page 3-58

“Code Fragment: Using waitForFigures to Block Execution of a Console
Application” on page 3-59

waitForFigures Method
The MATLAB Builder JA product adds a special waitForFigures method to
each Java class that it creates. waitForFigures takes no arguments. Your
application can call waitForFigures any time during execution.

The purpose of waitForFigures is to block execution of a calling program
as long as figures created in encapsulated MATLAB code are displayed.
Typically you use waitForFigures when:

• There are one or more figures open that were created by a Java component
created by the MATLAB Builder JA product.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When waitForFigures is called, execution of the calling program is blocked if
any figures created by the calling object remain open.

Caution Use care when calling the waitForFigures method. Calling
this method from an interactive program like Microsoft Excel can hang the
application. Call this method only from console-based programs.

3-58

Blocking Execution of a Console Application that Creates Figures

Code Fragment: Using waitForFigures to Block
Execution of a Console Application
The following example illustrates using waitForFigures from a Java
application. The example uses a Java component created by the MATLAB
Builder JA product; the object encapsulates MATLAB code that draws a
simple plot.

1 Create a work folder for your source code. In this example, the folder is
D:\work\plotdemo.

2 In this folder, create the following MATLAB file:

drawplot.m

function drawplot()
plot(1:10);

3 Use the MATLAB Builder JA product to create a Java component with the
following properties:

Package name examples

Class name Plotter

4 Create a Java program in a file named runplot.java with the following
code:

import com.mathworks.toolbox.javabuilder.*;
import examples.Plotter;

public class runplot {
public static void main(String[] args) {

try {
plotter p = new Plotter();
try {

p.showPlot();
p.waitForFigures();

}
finally {
p.dispose();

3-59

3 Programming

}
}
catch (MWException e) {

e.printStackTrace();
}

}
}

5 Compile the application with the javac command. For an example, see
“Testing the Java Component in a Java Application” on page 1-30.

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to waitForFigures, comment
out the call, rebuild the application, and run it. In this case, the figure is
drawn and is immediately destroyed as the application exits.

3-60

Ensuring Multi-Platform Portability

Ensuring Multi-Platform Portability
CTF archives containing only MATLAB files are platform independent, as are
.jar files. These files can be used out of the box on any platform providing
that the platform has either MATLAB or the MCR installed.

However, if your CTF archive or JAR file contains MEX-files, which are
platform dependent, do the following:

1 Compile your MEX-file once on each platform where you want to run your
MATLAB Builder JA application.

For example, if you are running on a Windows machine, and you want to
also run on the Linux® 64-bit platform, compile my_mex.c twice (once on
a PC to get my_mex.mexw32 and then again on a Linux 64-bit machine to
get my_mex.mexa64).

2 Create the MATLAB Builder JA component on one platform using the
mcc command, using the -a flag to include the MEX-file compiled on the
other platform(s). In the example above, run mcc on Windows and include
the -a flag to include my_mex.mexa64. In this example, the mcc command
would be:

mcc -W 'java:mycomp,myclass' my_matlab_file.m -a my_mex.mexa64

Note In this example, it is not necessary to explicitly include
my_mex.mexw32 (providing you are running on Windows). This example
assumes that my_mex.mexw32 and my_mex.mexa64 reside in the same folder.

For example, if you are running on a Windows machine and you want to
ensure portability of the CTF file for a MATLAB Builder JA component that
invokes the yprimes.c file (from matlabroot\extern\examples\mex) on the
Linux 64-bit platform, execute the following mcc command:

mcc -W 'java:mycomp,myclass' callyprime.m -a yprime.mexa64

where callyprime.m can be a simple MATLAB function as follows:

3-61

3 Programming

function callyprime
disp(yprime(1,1:4));

Ensure the yprime.mexa64 file is in the same folder as your Windows
MEX-file.

Tip If you are unsure if your JAR file contains MEX-files, do the following:

1 Run mcc with the -v option to list the names of the MEX-files. See “-v
Verbose” in the MATLAB Compiler documentation for more information.

2 Obtain appropriate versions of these files from the version of MATLAB
installed on your target operating system.

3 Include these versions in the archive by running mcc with the -a option
as documented in this section. See “-a Add to Archive” in the MATLAB
Compiler documentation for more information.

Caution Some toolbox functionality will not be deployable when compiled
into a Java component and run on a platform other than the one compiled on.
This is because some toolbox code includes data that may be platform specific.
If this is the case, you can only deploy the application to like platforms. For
example, the Image Processing Toolbox function IMHIST will fail if deployed
cross-platform with an undefined function error.

JAR files produced by MATLAB Builder JA are tested and qualified to run on
platforms supported by MATLAB. See the Platform Roadmap for MATLAB
for more information.

3-62

http://www.mathworks.com/support/sysreq/roadmap.html

Using MCR Component Cache and MWComponentOptions

Using MCR Component Cache and MWComponentOptions

In this section...

“MWComponentOptions” on page 3-63

“Selecting Options” on page 3-63

“Setting Options” on page 3-64

MWComponentOptions
As of R2007b, CTF data is now automatically extracted directly from the JAR
file with no separate CTF or componentnamemcr folder needed on the target
machine. This behavior is helpful when storage space on a file system is
limited.

If you don’t want to use this feature, use the MWComponentOptions class to
specify how the MATLAB Builder JA product handles CTF data extraction
and utilization.

Selecting Options
Choose from the following CtfSource or ExtractLocation instantiation
options to customize how the MATLAB Builder JA product manages CTF
content with MWComponentOptions:

• CtfSource— This option specifies where the CTF file may be found for an
extracted component. It defines a binary data stream comprised of the bits
of the CTF file. The following values are objects of some type extending
MWCtfSource:

- MWCtfSource.NONE— Indicates that no CTF file is to be extracted. This
implies that the extracted CTF data is already accessible somewhere on
your file system. This is a public, static, final instance of MWCtfSource.

- MWCtfFileSource — Indicates that the CTF data resides within a
particular file location that you specify. This class takes a java.io.File
object in its constructor.

- MWCtfDirectorySource — Indicates a folder to be scanned when
instantiating the component: if a file with a .ctf suffix is found in the

3-63

3 Programming

folder you supply, the CTF archive bits are loaded from that file. This
class takes a java.io.File object in its constructor.

- MWCtfStreamSource— Allows CTF bits to be read and extracted directly
from a specified input stream. This class takes a java.io.InputStream
object in its constructor.

• ExtractLocation— This option specifies where the extracted CTF content
is to be located. Since the MCR requires all CTF content be located
somewhere on your file system, use the desired ExtractLocation option,
along with the component type information, to define a unique location. A
value for this option is an instance of the class MWCtfExtractLocation.
An instance of this class can be created by passing a java.io.File or
java.lang.String into the constructor to specify the file system location
to be used or one of these predefined, static final instances may be used:

- MWCtfExtractLocation.EXTRACT_TO_CACHE— Use to indicate that the
CTF content is to be placed in the MCR component cache. This is the
default setting for R2007a and forward (see “How Does the MATLAB®

Builder JA Product Use JAR Files?” on page 1-26).

- MWCtfExtractLocation.EXTRACT_TO_COMPONENT_DIR— Use when you want
to locate the JAR or .class files from which the component has been
loaded. If the location is found (e.g., it is on the file system), then the
CTF data is extracted into the same folder. This option most closely
matches the behavior of R2007a and previous releases.

Note CTF archives are extracted by default to
user_name\AppData\Local\Temp\userid\mcrCachen.nn.

Setting Options
Use the following methods to get or set the location where the CTF archive
may be found for an extracted component:

• getCtfSource()

• setCtfSource()

Use the following methods to get or set the location where the extracted CTF
content is to be located:

3-64

Using MCR Component Cache and MWComponentOptions

• getExtractLocation()

• setExtractLocation()

Example: Enabling MCR Component Cache, Utilizing CTF
Content Already on Your System
If you want to enable the MCR Component Cache for a Java component (in
this example, using the user-built Java class MyModel) utilizing CTF content
already resident in your file system, instantiate MWComponentOptions using
the following statements:

MWComponentOptions options = new MWComponentOptions();

// set options for the component by calling setter methods
// on `options'
options.setCtfSource(MWCtfSource.NONE);

options.setExtractLocation(
new MWCtfExtractLocation(C:\\readonlydir\\MyModel_mcr));

// instantiate the component using the desired options
MyModel m = new MyModel(options);

3-65

3 Programming

Learning About Java Classes and Methods by Exploring
the Javadoc

The documentation generated by Sun Microsystems, Inc.’s Javadoc can be a
powerful resource when using the MATLAB Builder JA product. The Javadoc
can be browsed from any MATLAB Help browser or the MathWorks Web site
by entering the name of the class or method you want to learn more about in
the search field.

Javadoc contains, among other information:

• Signatures that diagram method and class usage

• Parameters passed in, return values expected, and exceptions that can be
thrown

• Examples demonstrating typical usage of the class or method

3-66

http://www.mathworks.com/

4

Sample Java Applications

• “Plot Example” on page 4-2

• “Spectral Analysis Example” on page 4-9

• “Matrix Math Example” on page 4-16

• “Phonebook Example” on page 4-28

• “Optimization Example” on page 4-37

• “Web Application Example” on page 4-48

Note Remember to double-quote all parts of the java command paths that
contain spaces. To test directly against the MCR when executing java,
substitute mcrroot for matlabroot, where mcrroot is the location where
the MCR is installed on your system.

4 Sample Java™ Applications

Plot Example

In this section...

“Purpose” on page 4-2

“Procedure” on page 4-2

Purpose
The purpose of the example is to show you how to do the following:

• Use the MATLAB Builder JA product to convert a MATLAB function
(drawplot) to a method of a Java class (plotter) and wrap the class in a
Java component (plotdemo).

• Access the component in a Java application (createplot.java) by
instantiating the plotter class and using the MWArray class library to
handle data conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• Build and run the createplot.java application.

The drawplot function displays a plot of input parameters x and y.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\PlotExample

b At the MATLAB command prompt, cd to the new PlotExample subfolder
in your work folder.

4-2

Plot Example

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 9-4.

3 Write the drawplot function as you would any MATLAB function.

The following code defines the drawplot function:

function drawplot(x,y)
plot(x,y);

This code is already in your work folder in
PlotExample\PlotDemoComp\drawplot.m.

4 While in MATLAB, issue the following command to open the Deployment
Tool Window:

deploytool

5 You create a Java application by using the Deployment Tool GUI to build a
Java class that wraps around your MATLAB code.

To compile or build the Java application using the Deployment Tool, use
the following information as you work through this example in “Building
the Java Component” on page 1-13:

Project Name plotdemo

Class Name plotter

File to compile drawplot.m

6 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\javabuilder\Examples\PlotExample
\PlotDemoJavaApp\createplot.java.

The program graphs a simple parabola from the equation y = x2 .

4-3

4 Sample Java™ Applications

The program listing is shown here.

createplot.java

/* createplot.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import plotdemo.*;

/*

* createplot class demonstrates plotting x-y data into

* a MATLAB figure window by graphing a simple parabola.

*/

class createplot

{

public static void main(String[] args)

{

MWNumericArray x = null; /* Array of x values */

MWNumericArray y = null; /* Array of y values */

plotter thePlot = null; /* Plotter class instance */

int n = 20; /* Number of points to plot */

try

{

/* Allocate arrays for x and y values */

int[] dims = {1, n};

x = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

y = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

/* Set values so that y = x^2 */

for (int i = 1; i <= n; i++)

{

4-4

Plot Example

x.set(i, i);

y.set(i, i*i);

}

/* Create new plotter object */

thePlot = new plotter();

/* Plot data */

thePlot.drawplot(x, y);

thePlot.waitForFigures();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(x);

MWArray.disposeArray(y);

if (thePlot != null)

thePlot.dispose();

}

}

}

The program does the following:

• Creates two arrays of double values, using MWNumericArray to represent
the data needed to plot the equation.

• Instantiates the plotter class as thePlot object, as shown:

thePlot = new plotter();

• Calls the drawplot method to plot the equation using the MATLAB
plot function, as shown:

thePlot.drawplot(x,y);

4-5

4 Sample Java™ Applications

• Uses a try-catch block to catch and handle any exceptions.

7 Compile the createplot application using javac. When entering this
command, ensure there are no spaces between path names in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\plotdemo.jar in the following
example. cd to your work folder. Ensure createplot.java is in your
work folder

• On Windows, execute this command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\plotdemo.jar createplot.java

• On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/plotdemo.jar createplot.java

8 Run the application.

To run the createplot.class file, do one of the following:

• On Windows, type:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\plotdemo.jar
createplot

• On UNIX, type:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/plotdemo.jar
createplot

4-6

Plot Example

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it
may be possible to run MCR-based components with non-Sun JDK’s under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the
-d64 flag in the Java command. See “Limitations and Restrictions” on page
9-3 for more specific information.

The createplot program should display the output.

4-7

4 Sample Java™ Applications

4-8

Spectral Analysis Example

Spectral Analysis Example

In this section...

“Purpose” on page 4-9

“Procedure” on page 4-9

Purpose
The purpose of the example is to show you the following:

• How to use the MATLAB Builder JA product to create a component
(spectralanalysis) containing a class that has a private method that is
automatically encapsulated

• How to access the component in a Java application (powerspect.java),
including use of the MWArray class hierarchy to represent data

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the application

The component spectralanalysis analyzes a signal and graphs the result.
The class, fourier, performs a fast Fourier transform (FFT) on an input data
array. A method of this class, computefft, returns the results of that FFT
as two output arrays—an array of frequency points and the power spectral
density. The second method, plotfft, graphs the returned data. These two
methods, computefft and plotfft, encapsulate MATLAB functions.

The MATLAB code for these two methods is in
computefft.m and plotfft.m, which is found in
matlabroot\toolbox\javabuilder\Examples\SpectraExample\SpectraDemoComp.

Procedure

1 If you have not already done so, copy the files for this example as follows:

4-9

4 Sample Java™ Applications

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\SpectraExample

b At the MATLAB command prompt, cd to the new SpectraExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 9-4.

3 Write the MATLAB code that you want to access.

This example uses computefft.m and plotfft.m, which are already in
your work folder in SpectraExample\SpectraDemoComp.

4 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

5 You create a Java application by using the Deployment Tool GUI to build a
Java class that wraps around your MATLAB code.

To compile or build the Java application using the Deployment Tool, use
the following information as you work through this example in “Building
the Java Component” on page 1-13:

Project Name spectralanalysis

Class Name fourier

File to compile plotfft.m

Note In this example, the application that uses the fourier class does not
need to call computefft directly. The computefft method is required only
by the plotfft method. Thus, when creating the component, you do not
need to add the computefft function, although doing so does no harm.

4-10

Spectral Analysis Example

6 Write source code for an application that accesses the component.

The sample application for this example is in
SpectraExample\SpectraDemoJavaApp\powerspect.java.

The program listing is shown here.

powerspect.java

/* powerspect.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import spectralanalysis.*;

/*

* powerspect class computes and plots the power

* spectral density of an input signal.

*/

class powerspect

{

public static void main(String[] args)

{

double interval = 0.01; /* Sampling interval */

int nSamples = 1001; /* Number of samples */

MWNumericArray data = null; /* Stores input data */

Object[] result = null; /* Stores result */

fourier theFourier = null; /* Fourier class instance */

try

{

/*

* Construct input data as sin(2*PI*15*t) +

* sin(2*PI*40*t) plus a random signal.

* Duration = 10

4-11

4 Sample Java™ Applications

* Sampling interval = 0.01

*/

int[] dims = {1, nSamples};

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE,

MWComplexity.REAL);

for (int i = 1; i <= nSamples; i++)

{

double t = (i-1)*interval;

double x = Math.sin(2.0*Math.PI*15.0*t) +

Math.sin(2.0*Math.PI*40.0*t) +

Math.random();

data.set(i, x);

}

/* Create new fourier object */

theFourier = new fourier();

theFourier.waitForFigures();

/* Compute power spectral density and plot result */

result = theFourier.plotfft(3, data,

new Double(interval));

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(data);

MWArray.disposeArray(result);

if (theFourier != null)

theFourier.dispose();

}

}

}

4-12

Spectral Analysis Example

The program does the following:

• Constructs an input array with values representing a random signal
with two sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data, as shown:

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE, MWComplexity.REAL);

• Instantiates a fourier object

• Calls the plotfft method, which calls computeftt and plots the data

• Uses a try-catch block to handle exceptions

• Frees native resources using MWArray methods

7 Compile the powerspect.java application using javac. When entering
this command, ensure there are no spaces between path names in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\spectralanalysis.jar in the
following example.

Open a Command Prompt window and cd to the
matlabroot\spectralanalysis folder. cd to your work folder. Ensure
powerspect.java is in your work folder

• On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\spectralanalysis.jar powerspect.java

• On UNIX, execute the following command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/spectralanalysis.jar powerspect.java

4-13

4 Sample Java™ Applications

Note For matlabroot substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

8 Run the application.

• On Windows, execute the powerspect class file:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar
.\distrib\spectralanalysis.jar
powerspect

• On UNIX, execute the powerspect class file:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/spectralanalysis.jar
powerspect

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it
may be possible to run MCR-based components with non-Sun JDK’s under
some circumstances—however, compatibility is not guaranteed.

4-14

Spectral Analysis Example

Note If you are running on the Mac 64-bit platform, you must add the
-d64 flag in the Java command. See “Limitations and Restrictions” on page
9-3 for more specific information.

The powerspect program should display the output:

4-15

4 Sample Java™ Applications

Matrix Math Example

In this section...

“Purpose” on page 4-16

“MATLAB Functions to Be Encapsulated” on page 4-17

“Understanding the getfactor Program” on page 4-18

“Procedure” on page 4-18

Purpose
The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a component class.

• How to manually handle native memory management.

• How to access the component in a Java application (getfactor.java) by
instantiating Factor and using the MWArray class library to handle data
conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the MatrixMathDemoApp application

This example builds a Java component to perform matrix math. The example
creates a program that performs Cholesky, LU, and QR factorizations on a
simple tridiagonal matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

You supply the size of the matrix on the command line, and the program
constructs the matrix and performs the three factorizations. The original

4-16

Matrix Math Example

matrix and the results are printed to standard output. You may optionally
perform the calculations using a sparse matrix by specifying the string
"sparse" as the second parameter on the command line.

MATLAB Functions to Be Encapsulated
The following code defines the MATLAB functions used in the example:

cholesky.m

function [L] = cholesky(A)

%CHOLESKY Cholesky factorization of A.

% L = CHOLESKY(A) returns the Cholesky factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2011 The MathWorks, Inc.

L = chol(A);

ludecomp.m

function [L,U] = ludecomp(A)

%LUDECOMP LU factorization of A.

% [L,U] = LUDECOMP(A) returns the LU factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2011 The MathWorks, Inc.

[L,U] = lu(A);

qrdecomp.m

function [Q,R] = qrdecomp(A)

%QRDECOMP QR factorization of A.

% [Q,R] = QRDECOMP(A) returns the QR factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2011 The MathWorks, Inc.

4-17

4 Sample Java™ Applications

[Q,R] = qr(A);

Understanding the getfactor Program
The getfactor program takes one or two arguments from standard input.
The first argument is converted to the integer order of the test matrix. If the
string sparse is passed as the second argument, a sparse matrix is created
to contain the test array. The Cholesky, LU, and QR factorizations are then
computed and the results are displayed to standard output.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls
the cholesky, ludecomp, and qrdecomp methods. This part is executed
inside of a try block. This is done so that if an exception occurs during
execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard
output to let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources
before exiting.

Procedure

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\MatrixMathExample

b At the MATLAB command prompt, cd to the new MatrixMathExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 9-4.

3 Write the MATLAB functions as you would any MATLAB function.

4-18

Matrix Math Example

The code for the cholesky, ludecomp, and qrdecomp functions is already in
your work folder in MatrixMathExample\MatrixMathDemoComp\.

4 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

5 You create a Java application by using the Deployment Tool GUI to build a
Java class that wraps around your MATLAB code.

To compile or build the Java application using the Deployment Tool, use
the following information as you work through this example in “Building
the Java Component” on page 1-13:

Project Name factormatrix

Class Name factor

Files to compile cholesky.m ludecomp.m qrdecomp.m

6 Write source code for an application that accesses the component.

The sample application for this example is in
MatrixMathExample\MatrixMathDemoJavaApp\getfactor.java.

The program listing is shown here.

getfactor.java

/* getfactor.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import factormatrix.*;

4-19

4 Sample Java™ Applications

/*

* getfactor class computes cholesky, LU, and QR

* factorizations of a finite difference matrix

* of order N. The value of N is passed on the

* command line. If a second command line arg

* is passed with the value of "sparse", then

* a sparse matrix is used.

*/

class getfactor

{

public static void main(String[] args)

{

MWNumericArray a = null; /* Stores matrix to factor */

Object[] result = null; /* Stores the result */

factor theFactor = null; /* Stores factor class instance */

try

{

/* If no input, exit */

if (args.length == 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/* Convert input value */

int n = Integer.valueOf(args[0]).intValue();

if (n <= 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/*

* Allocate matrix. If second input is "sparse"

* allocate a sparse array

*/

int[] dims = {n, n};

4-20

Matrix Math Example

if (args.length > 1 && args[1].equals("sparse"))

a = MWNumericArray.newSparse(dims[0], dims[1],n+2*(n-1),

MWClassID.DOUBLE, MWComplexity.REAL);

else

a = MWNumericArray.newInstance(dims,MWClassID.DOUBLE, MWComplexity.REAL);

/* Set matrix values */

int[] index = {1, 1};

for (index[0] = 1; index[0] <= dims[0]; index[0]++)

{

for (index[1] = 1; index[1] <= dims[1]; index[1]++)

{

if (index[1] == index[0])

a.set(index, 2.0);

else if (index[1] == index[0]+1 || index[1] == index[0]-1)

a.set(index, -1.0);

}

}

/* Create new factor object */

theFactor = new factor();

/* Print original matrix */

System.out.println("Original matrix:");

System.out.println(a);

/* Compute cholesky factorization and print results. */

result = theFactor.cholesky(1, a);

System.out.println("Cholesky factorization:");

System.out.println(result[0]);

MWArray.disposeArray(result);

/* Compute LU factorization and print results. */

result = theFactor.ludecomp(2, a);

System.out.println("LU factorization:");

System.out.println("L matrix:");

System.out.println(result[0]);

System.out.println("U matrix:");

System.out.println(result[1]);

4-21

4 Sample Java™ Applications

MWArray.disposeArray(result);

/* Compute QR factorization and print results. */

result = theFactor.qrdecomp(2, a);

System.out.println("QR factorization:");

System.out.println("Q matrix:");

System.out.println(result[0]);

System.out.println("R matrix:");

System.out.println(result[1]);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(a);

MWArray.disposeArray(result);

if (theFactor != null)

theFactor.dispose();

}

}

}

The statement:

theFactor = new factor();

creates an instance of the class factor.

The following statements call the methods that encapsulate the MATLAB
functions:

result = theFactor.cholesky(1, a);
...
result = theFactor.ludecomp(2, a);
...

4-22

Matrix Math Example

result = theFactor.qrdecomp(2, a);
...

7 Copy getfactor.java into the factormatrix folder.

8 Compile the getfactor application using javac. When entering this
command, ensure there are no spaces between path names in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\factormatrix.jar in the following
example.

cd to the factormatrix folder in your work folder.

• On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\factormatrix.jar getfactor.java

• On UNIX, execute the following command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/factormatrix.jar getfactor.java

9 Run the application.

Run getfactor using a nonsparse matrix

• On Windows, execute the getfactor class file as follows:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\factormatrix.jar
getfactor 4

• On UNIX, execute the getfactor class file as follows:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/factormatrix.jar

4-23

4 Sample Java™ Applications

getfactor 4

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it may
be possible to run MCR-based components with non-Sun JDK’s under some
circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the -d64
flag in the Java command. See “Limitations and Restrictions” on page 9-3
for more specific information.

Output for the Matrix Math Example

Original matrix:
2 -1 0 0

-1 2 -1 0
0 -1 2 -1
0 0 -1 2

Cholesky factorization:
1.4142 -0.7071 0 0

0 1.2247 -0.8165 0
0 0 1.1547 -0.8660
0 0 0 1.1180

LU factorization:
L matrix:

4-24

Matrix Math Example

1.0000 0 0 0
-0.5000 1.0000 0 0

0 -0.6667 1.0000 0
0 0 -0.7500 1.0000

U matrix:
2.0000 -1.0000 0 0

0 1.5000 -1.0000 0
0 0 1.3333 -1.0000
0 0 0 1.2500

QR factorization:
Q matrix:

-0.8944 -0.3586 -0.1952 0.1826
0.4472 -0.7171 -0.3904 0.3651

0 0.5976 -0.5855 0.5477
0 0 0.6831 0.7303

R matrix:
-2.2361 1.7889 -0.4472 0

0 -1.6733 1.9124 -0.5976
0 0 -1.4639 1.9518
0 0 0 0.9129

To run the same program for a sparse matrix, use the same command and add
the string sparse to the command line:

java (... same arguments) getfactor 4 sparse

Output for a Sparse Matrix

Original matrix:
(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1

4-25

4 Sample Java™ Applications

(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4) 2

Cholesky factorization:
(1,1) 1.4142
(1,2) -0.7071
(2,2) 1.2247
(2,3) -0.8165
(3,3) 1.1547
(3,4) -0.8660
(4,4) 1.1180

LU factorization:
L matrix:

(1,1) 1.0000
(2,1) -0.5000
(2,2) 1.0000
(3,2) -0.6667
(3,3) 1.0000
(4,3) -0.7500
(4,4) 1.0000

U matrix:
(1,1) 2.0000
(1,2) -1.0000
(2,2) 1.5000
(2,3) -1.0000
(3,3) 1.3333
(3,4) -1.0000
(4,4) 1.2500

QR factorization:
Q matrix:

4-26

Matrix Math Example

(1,1) 0.8944
(2,1) -0.4472
(1,2) 0.3586
(2,2) 0.7171
(3,2) -0.5976
(1,3) 0.1952
(2,3) 0.3904
(3,3) 0.5855
(4,3) -0.6831
(1,4) 0.1826
(2,4) 0.3651
(3,4) 0.5477
(4,4) 0.7303

R matrix:
(1,1) 2.2361
(1,2) -1.7889
(2,2) 1.6733
(1,3) 0.4472
(2,3) -1.9124
(3,3) 1.4639
(2,4) 0.5976
(3,4) -1.9518
(4,4) 0.9129

4-27

4 Sample Java™ Applications

Phonebook Example

In this section...

“Purpose” on page 4-28

“Procedure” on page 4-28

Purpose
An example of how to process an MWStructArray as output from a generated
component might be:

Object[] tmp = myComponent.myFunction(1, myArray);
MWStructArray myStruct = (MWStructArray) tmp[0];

The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

Note For complete reference information about the MWArray class hierarchy,
see the com.mathworks.toolbox.javabuilder package.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\PhoneExample

b At the MATLAB command prompt, cd to the new PhoneExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 9-4.

3 Write the makephone function as you would any MATLAB function.

4-28

Phonebook Example

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% This file is used as an example for MATLAB

% Builder for Java.

% Copyright 2006-2011 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in
PhoneExample\PhoneDemoComp\makephone.m.

4 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

5 You create a Java application by using the Deployment Tool GUI to build a
Java class that wraps around your MATLAB code.

To compile or build the Java application using the Deployment Tool, use
the following information as you work through this example in “Building
the Java Component” on page 1-13:

Project Name phonebookdemo

Class Name phonebook

File to compile makephone.m

6 Write source code for an application that accesses the component.

4-29

4 Sample Java™ Applications

The sample application for this example is in
matlabroot\toolbox\javabuilder\Examples\PhoneExample\
PhoneDemoJavaApp\getphone.java.

The program defines a structure array containing names and phone
numbers, modifies it using a MATLAB function, and displays the resulting
structure array.

The program listing is shown here.

getphone.java

/* getphone.java

% This file is used as an example for MATLAB

% Builder for Java.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import phonebookdemo.*;

/*

* getphone class demonstrates the use of the MWStructArray class

*/

class getphone

{

public static void main(String[] args)

{

phonebook thePhonebook = null; /* Stores magic class instance */

MWStructArray friends = null; /* Sample input data */

Object[] result = null; /* Stores the result */

MWStructArray book = null; /* Output data extracted from result */

try

{

/* Create new magic object */

thePhonebook = new phonebook();

4-30

Phonebook Example

/* Create an MWStructArray with two fields */

String[] myFieldNames = {"name", "phone"};

friends = new MWStructArray(2,2,myFieldNames);

/* Populate struct with some sample data --- friends and phone numbers */

friends.set("name",1,new MWCharArray("Jordan Robert"));

friends.set("phone",1,3386);

friends.set("name",2,new MWCharArray("Mary Smith"));

friends.set("phone",2,3912);

friends.set("name",3,new MWCharArray("Stacy Flora"));

friends.set("phone",3,3238);

friends.set("name",4,new MWCharArray("Harry Alpert"));

friends.set("phone",4,3077);

/* Show some of the sample data */

System.out.println("Friends: ");

System.out.println(friends.toString());

/* Pass it to a MATLAB function that determines external phone number */

result = thePhonebook.makephone(1, friends);

book = (MWStructArray)result[0];

System.out.println("Result: ");

System.out.println(book.toString());

/* Extract some data from the returned structure */

System.out.println("Result record 2:");

System.out.println(book.getField("name",2));

System.out.println(book.getField("phone",2));

System.out.println(book.getField("external",2));

/* Print the entire result structure using the helper function below */

System.out.println("");

System.out.println("Entire structure:");

dispStruct(book);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

4-31

4 Sample Java™ Applications

finally

{

/* Free native resources */

MWArray.disposeArray(result);

MWArray.disposeArray(friends);

MWArray.disposeArray(book);

if (thePhonebook != null)

thePhonebook.dispose();

}

}

public static void dispStruct(MWStructArray arr) {

System.out.println("Number of Elements: " + arr.numberOfElements());

//int numDims = arr.numberOfDimensions();

int[] dims = arr.getDimensions();

System.out.print("Dimensions: " + dims[0]);

for (int i = 1; i < dims.length; i++)

{

System.out.print("-by-" + dims[i]);

}

System.out.println("");

System.out.println("Number of Fields: " + arr.numberOfFields());

System.out.println("Standard MATLAB view:");

System.out.println(arr.toString());

System.out.println("Walking structure:");

java.lang.String[] fieldNames = arr.fieldNames();

for (int element = 1; element <= arr.numberOfElements(); element++) {

System.out.println("Element " + element);

for (int field = 0; field < arr.numberOfFields(); field++) {

MWArray fieldVal = arr.getField(fieldNames[field], element);

/* Recursively print substructures, give string display of other classes */

if (fieldVal instanceof MWStructArray)

{

System.out.println(" " + fieldNames[field] + ": nested structure:");

System.out.println("+++ Begin of \"" +

fieldNames[field] + "\" nested structure");

dispStruct((MWStructArray)fieldVal);

System.out.println("+++ End of \"" + fieldNames[field] +

"\" nested structure");

4-32

Phonebook Example

} else {

System.out.print(" " + fieldNames[field] + ": ");

System.out.println(fieldVal.toString());

}

}

}

}

}

The program does the following:

• Creates a structure array, using MWStructArray to represent the
example phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown:

thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:

result = thePhonebook.makephone(1, friends);

• Uses a try-catch block to catch and handle any exceptions.

7 Compile the getphone application using javac. When entering this
command, ensure there are no spaces between path names in the
matlabroot argument. For example, there should be no space between
javabuilder.jar; and .\distrib\phonebookdemo.jar in the following
example. cd to your work folder. Ensure getphone.java is in your work
folder

• On Windows, execute this command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\phonebookdemo.jar getphone.java

• On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

4-33

4 Sample Java™ Applications

./distrib/phonebookdemo.jar getphone.java

8 Run the application.

To run the getphone.class file, do one of the following:

• On Windows, type:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\phonebookdemo.jar
getphone

• On UNIX, type:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/phonebookdemo.jar
getphone

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it
may be possible to run MCR-based components with non-Sun JDK’s under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the
-d64 flag in the Java command. See “Limitations and Restrictions” on page
9-3 for more specific information.

4-34

Phonebook Example

The getphone program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:
Element 1

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert

4-35

4 Sample Java™ Applications

phone: 3077
external: (508) 555-3077

4-36

Optimization Example

Optimization Example

In this section...

“Purpose” on page 4-37

“OptimDemo Component” on page 4-37

“Procedure” on page 4-38

Purpose
This example shows how to:

• Use the MATLAB Builder JA product to create a component (OptimDemo)
that applies MATLAB optimization routines to objective functions
implemented as Java objects.

• Access the component in a Java application (PerformOptim.java),
including use of the MWJavaObjectRef class to create a reference to a Java
object (BananaFunction.java) and pass it to the component.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder Javadoc package
in the MATLAB Help or on the Web.

• Build and run the application.

OptimDemo Component
The component OptimDemo finds a local minimum of an objective function
and returns the minimal location and value. The component uses the
MATLAB optimization function fminsearch, and this example optimizes
the Rosenbrock banana function used in the fminsearch documentation.
The class, Optimizer, performs an unconstrained nonlinear optimization
on an objective function implemented as a Java object. A method of this
class, doOptim, accepts an initial guess and Java object that implements
the objective function, and returns the location and value of a local
minimum. The second method, displayObj, is a debugging tool that lists
the characteristics of a Java object. These two methods, doOptim and

4-37

4 Sample Java™ Applications

displayObj, encapsulate MATLAB functions. The MATLAB code for these
two methods is in doOptim.m and displayObj.m, which can be found in
matlabroot\toolbox\javabuilder\Examples\ObjectRefExample
\ObjectRefDemoComp.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:
matlabroot\toolbox\javabuilder\Examples\ObjectRefExample

b At the MATLAB command prompt, cd to the new ObjectRefExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Settings for Environment
Variables (Development Machine)” on page 9-4.

3 Write the MATLAB code that you want to access. This example uses
doOptim.m and displayObj.m, which are already in your work folder in
ObjectRefExample\ObjectRefDemoComp.

For reference, the code of doOptim.m is displayed here:

function [x,fval] = doOptim(h, x0)
%DOOPTIM Optimize a Java objective function
% This file is used as an example for the
% MATLAB Builder JA product.

% FMINSEARCH can't operate directly on Java
% objective functions,
% so you must create an anonymous function with the correct
% signature to wrap the Java object.
% Here, we assume our object has a method evaluateFunction()
% that takes an array of doubles and returns a double.
% This could become an Interface,
% and we could check that the object implements that Interface.
mWrapper = @(x) h.evaluateFunction(x);

4-38

Optimization Example

% Compare two ways of evaluating the objective function
% These eventually call the same Java method, and return the
% same results.
directEval = h.evaluateFunction(x0)
wrapperEval = mWrapper(x0)

[x,fval] = fminsearch(mWrapper,x0)

For reference, the code of displayObj.m is displayed here:

function className = displayObj(h)
%DISPLAYOBJ Display information about a Java object
% This file is used as an example for the
% MATLAB Builder JA product.

h
className = class(h)
whos('h')
methods(h)

4 While in MATLAB, issue the following command to open the Deployment
Tool window:

deploytool

5 You create a Java application by using the Deployment Tool GUI to build a
Java class that wraps around your MATLAB code.

To compile or build the Java application using the Deployment Tool, use
the following information as you work through this example in “Building
the Java Component” on page 1-13:

Project Name OptimDemo

Class Name Optimizer

File to compile doOptim.m
displayObj.m

6 Write source code for a class that implements an object function
to optimize. The sample application for this example is in

4-39

4 Sample Java™ Applications

ObjectRefExample\ObjectRefDemoJavaApp\BananaFunction.java. The
program listing is shown here:

/* BananaFunction.java

* This file is used as an example for the MATLAB

* Builder JA product.

*

* Copyright 2001-2011 The MathWorks, Inc.

* $Revision: 1.1.4.4 $ $Date: 2010/12/24 12:47:08 $

*/

public class BananaFunction {

public BananaFunction() {}

public double evaluateFunction(double[] x)

{

/* Implements the Rosenbrock banana function described in

* the FMINSEARCH documentation

*/

double term1 = 100*java.lang.Math.pow((x[1]-Math.pow(x[0],2.0)),2.0);

double term2 = Math.pow((1-x[0]),2.0);

return term1 + term2;

}

}

The class implements the Rosenbrock banana function described in the
fminsearch documentation.

7 Write source code for an application that accesses the
component. The sample application for this example is in
ObjectRefExample\ObjectRefDemoJavaApp\PerformOptim.java. The
program listing is shown here:

/* PerformOptim.java
* This file is used as an example for the MATLAB
* Builder JA product.
*
* Copyright 2001-2011 The MathWorks, Inc.
* $Revision: 1.1.4.4 $ $Date: 2010/12/24 12:47:08 $
*/

4-40

Optimization Example

/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import OptimDemo.*;

/*
* Demonstrates the use of the MWJavaObjectRef class
* Takes initial point for optimization as two arguments:
* PerformOptim -1.2 1.0
*/

class PerformOptim
{
public static void main(String[] args)
{
Optimizer theOptimizer = null; /* Stores component

instance */
MWJavaObjectRef origRef = null; /* Java object reference to

be passed to component */
MWJavaObjectRef outputRef = null; /* Output data extracted

from result */
MWNumericArray x0 = null; /* Initial point for optimization */
MWNumericArray x = null; /* Location of minimal value */
MWNumericArray fval = null; /* Minimal function value */
Object[] result = null; /* Stores the result */

try
{
/* If no input, exit */
if (args.length < 2)
{
System.out.println("Error: must input initial x0_1

and x0_2 position");
return;

}

/* Instantiate a new Builder component object */
/* This should only be done once per application instance */
theOptimizer = new Optimizer();

4-41

4 Sample Java™ Applications

try {
/* Initial point --- parse data from text fields */
double[] x0Data = new double[2];
x0Data[0] = Double.valueOf(args[0]).doubleValue();
x0Data[1] = Double.valueOf(args[1]).doubleValue();
x0 = new MWNumericArray(x0Data, MWClassID.DOUBLE);
System.out.println("Using x0 =");
System.out.println(x0);

/* Create object reference to objective function object */
BananaFunction objectiveFunction = new BananaFunction();
origRef = new MWJavaObjectRef(objectiveFunction);

/* Pass Java object to a MATLAB function that lists its
methods, etc */

System.out.println("*********************************");
System.out.println("** Properties of Java object **");
System.out.println("*********************************");
result = theOptimizer.displayObj(1, origRef);
MWArray.disposeArray(result);
System.out.println("** Finished DISPLAYOBJ **********");

/* Call the Java component to optimize the function */
/* using the MATLAB function FMINSEARCH */
System.out.println("**********************************");
System.out.println("** Unconstrained nonlinear optim**");
System.out.println("**********************************");
result = theOptimizer.doOptim(2, origRef, x0);
try {
System.out.println("** Finished DOOPTIM ****** *********");
x = (MWNumericArray)result[0];
fval = (MWNumericArray)result[1];

/* Display the results of the optimization */
System.out.println("Location of minimum: ");
System.out.println(x);
System.out.println("Function value at minimum: ");
System.out.println(fval.toString());

}
finally

4-42

Optimization Example

{
MWArray.disposeArray(result);

}
}
finally
{
/* Free native resources */
MWArray.disposeArray(origRef);
MWArray.disposeArray(outputRef);
MWArray.disposeArray(x0);

}
}
catch (Exception e)
{
System.out.println("Exception: " + e.toString());

}

finally
{
/* Free native resources */
if (theOptimizer != null)
theOptimizer.dispose();

}
}

}

The program does the following:

• Instantiates an object of the BananaFunction class above to be optimized.

• Creates an MWJavaObjectRef that references the BananaFunction object,
as shown: origRef = new MWJavaObjectRef(objectiveFunction);

• Instantiates an Optimizer object

• Calls the displayObj method to verify that the Java object is being
passed correctly

• Calls the doOptim method, which uses fminsearch to find a local
minimum of the objective function

• Uses a try/catch block to handle exceptions

4-43

4 Sample Java™ Applications

• Frees native resources using MWArray methods

8 Compile the PerformOptim.java application and BananaFunction.java
helper class using javac. When entering this command, ensure there
are no spaces between path names in the matlabroot argument. For
example, there should be no space between javabuilder.jar; and
.\distrib\OptimDemo.jar in the following example.

a Open a Command Prompt window and cd to the
matlabroot\ObjectRefExample folder.

b Compile the application according to which operating system you are
running on:

• On Windows, execute this command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\OptimDemo.jar BananaFunction.java
javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\OptimDemo.jar PerformOptim.java

• On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar BananaFunction.java
javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar PerformOptim.java

9 Execute the PerformOptim class file as follows:

On Windows, type:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar
.\distrib\OptimDemo.jar
PerformOptim -1.2 1.0

4-44

Optimization Example

On UNIX, type:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar
PerformOptim -1.2 1.0

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it
may be possible to run MCR-based components with non-Sun JDK’s under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the
-d64 flag in the Java command. See “Limitations and Restrictions” on page
9-3 for more specific information.

When run successfully, the PerformOptim program should display the
following output:

Using x0 =
-1.2000 1.0000

** Properties of Java object **

h =

BananaFunction@1766806

4-45

4 Sample Java™ Applications

className =

BananaFunction

Name Size Bytes Class Attributes

h 1x1 BananaFunction

Methods for class BananaFunction:

BananaFunction getClass notifyAll
equals hashCode toString
evaluateFunction notify wait

** Finished DISPLAYOBJ ******************************

** Performing unconstrained nonlinear optimization **

directEval =

24.2000

wrapperEval =

24.2000

x =

1.0000 1.0000

fval =

4-46

Optimization Example

8.1777e-10

Optimization successful
** Finished DOOPTIM *********************************
Location of minimum:
1.0000 1.0000
Function value at minimum:
8.1777e-10

4-47

4 Sample Java™ Applications

Web Application Example

In this section...

“Example Overview” on page 4-48

“Before You Work this Example” on page 4-48

“Downloading the Demo Files” on page 4-49

“Build Your Java Component” on page 4-50

“Compiling Your Java Code” on page 4-51

“Generating the Web Archive (WAR) File ” on page 4-51

“Running the Web Deployment Demo” on page 4-52

“Using the Web Application” on page 4-52

Example Overview
This example demonstrates how to display a plot created by a Java servlet
calling a component created with the MATLAB Builder JA product over a Web
interface. This example uses MATLAB varargin and varargout for optional
input and output to the varargexample.m function. For more information
about varargin and varargout, see “Specifying Optional Arguments” on
page 3-16.

Before You Work this Example
This section describes what you need to know and do before you create the
Web deployment example.

• “Ensure You Have the Required Products” on page 4-48

• “Ensure Your Web Server Is Java Compliant” on page 4-49

• “Install the javabuilder.jar Library” on page 4-49

Ensure You Have the Required Products
The following products must be installed at their recommended release levels.

4-48

Web Application Example

MATLAB, MATLAB Compiler, MATLAB Builder JA. This example was
tested with R2007b.

Java Development Kit (JDK). Ensure you have a JDK installed on your
system. You can download it from Sun Microsystems, Inc.

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it may
be possible to run MCR-based components with non-Sun JDK’s under some
circumstances—however, compatibility is not guaranteed.

Ensure Your Web Server Is Java Compliant
In order to run this example, your Web server must be capable of running
accepted Java frameworks like J2EE. Running the WebFigures demo
(Chapter 5, “Deploying a Java Component Over the Web”) also requires the
ability to run servlets in WARs (Web Archives).

Install the javabuilder.jar Library
Ensure that the javabuilder.jar library
(matlabroot/toolbox/javabuilder/jar/javabuilder.jar) has been
installed into your Web server’s common library folder.

Downloading the Demo Files
Download the demo files from the File Exchange at MATLAB Central. With
File Exchange selected in the Search drop-down box, enter the keyword
java_web_vararg_demo and click Go.

4-49

http://www.Oracle.com/servers
http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do

4 Sample Java™ Applications

Contents of the Demo Files
The demo files contain the following three folders:

• mcode— Contains all of the MATLAB source code.

• JavaCode— Contains the required Java files and libraries.

• compile— Contains some helpful MATLAB functions to compile and clean
up the demo.

Note As an alternative to compiling the demo code manually and
creating the application WAR (Web Archive) manually, you can run
compileVarArgServletDemo.m in the compile folder. If you choose this
option and want to change the locations of the output files, edit the values
in getVarArgServletDemoSettings.m.

If you choose to run compileVarArgServletDemo.m, consult the readme file
in the download for additional information and then skip to “Running the
Web Deployment Demo” on page 4-52.

Build Your Java Component
Build your Java component by compiling your code into a deployable Java
component .jar file.

Note For a more detailed explanation of building a Java component,
including further details on setting up your Java environment, the src and
distrib folders, and other information, see Chapter 1, “Getting Started”

1 Start deploytool at the MATLAB command line.

2 You create a Java application by using the Deployment Tool GUI to build a
Java class that wraps around your MATLAB code.

To compile or build the Java application using the Deployment Tool, use
the following information as you work through this example in “Building
the Java Component” on page 1-13:

4-50

Web Application Example

Project Name vararg_java

Class Name vararg_javaclass

File to compile varargexample.m

Compiling Your Java Code
Use javac to compile the Java source file VarArgServletClass.java from
demo folder JavaCode\src\VarArg.

javac.exe should be located in the bin folder of your JDK installation.

Ensure your classpath is set to include:

• javabuilder.jar (shipped with the MATLAB Builder JA product)

• vararg_java.jar (shipped with the MATLAB Builder JA product)

• servlet-api.jar (in the demo folder JavaCode\lib)

For more details about using javac, see the Sun Microsystems, Inc. Web site.

Generating the Web Archive (WAR) File
Web archive or WAR files are a type of Java Archive used to deploy J2EE and
JSP servlets. To run this example you will need to use the jar command
to generate the final WAR file that runs the application. To do this, follow
these steps:

1 Add javabuilder.jar to the WEB-INF\lib directory. For more
information, see “Helper Library Locations” in the MATLAB Application
Deployment Web Example Guide.

2 Copy the JAR file created using the MATLAB Builder JA product into the
JavaCode\build\WEB-INF\classes\VarArg demo folder.

3 Copy the compiled Java class to the
JavaCode\build\WEB-INF\classes\VarArg demo folder.

4 From the folder JavaCode, use the jar command to generate the final
WAR as follows:

4-51

http://www.Oracle.com/servers

4 Sample Java™ Applications

jar cf VarArgServlet.war -C build .

Caution Don’t omit the . parameter above, which denotes the current
working folder.

Caution Placing javabuilder.jar in the WEB-INF/Lib folder for a single
Web application generally works. However, if another application also
places javabuilder.jar in its WEB-INF/Lib locations, problems may occur.
The native resources associated with javabuilder.jar can be loaded only
once in an application. Therefore, javabuilder.jar must only be visible to
a single class loader.

For more information about the jar command, refer to the Sun
Microsystems, Inc. Web site.

Running the Web Deployment Demo
When you’re ready to run the application, do the following:

1 Install the VarArgServlet.war file into your Web server’s webapps folder.

2 Run the application by entering
http://localhost:port_number/VarArgServlet in the address field of
your Web browser, where port_number is the port that your Web server is
configured to use (usually 8080).

Using the Web Application
To use the application, do the following on the
http://localhost/VarArgServlet Web page:

4-52

http://www.Oracle.com/servers
http://www.Oracle.com/servers

Web Application Example

1 Enter any amount of numbers to plot in the Data to Plot field.

2 Select Line Color and Border Color using the Optional Input
drop-down lists. Note that these optional inputs are passed as varargin to
the compiled MATLAB code.

3 Select additional information you want to output, such as mean and
standard deviation, by clicking an option in the Optional Output area.
Note that these optional outputs are set as varargout from the compiled
MATLAB code.

4 Click Display Plot. Example output is shown below using the Mean
optional output.

4-53

4 Sample Java™ Applications

4-54

5

Deploying a Java
Component Over the Web

• “About the WebFigures Feature” on page 5-2

• “Preparing to Implement WebFigures for MATLAB® Builder JA” on page
5-3

• “Quick Start: Implementing a Custom WebFigure” on page 5-9

• “Advanced Configuration of a WebFigure” on page 5-16

5 Deploying a Java™ Component Over the Web

About the WebFigures Feature
Using the WebFigures feature in MATLAB Builder JA, you display MATLAB
figures on a Web site for graphical manipulation by end users. This enables
them to use their graphical applications from anywhere on the Web without
the need to download MATLAB or other tools that can consume costly
resources. End users do not need to have the MATLAB Compiler Runtime
(MCR) installed on their systems to use WebFigures.

“Quick Start: Implementing a Custom WebFigure” on page 5-9 guides
you through implementing the basic features of WebFigures, and lets you
customize your configuration depending on your server architecture.

Supported Renderers for WebFigures
The MATLAB Builder JA WebFigures feature uses the same renderer used
when the figure was originally created by default.

In MATLAB, the renderer is either explicitly specified for
a figure or determined by the data being plotted. For
more information about supported renderers in MATLAB, see
http://www.mathworks.com/support/tech-notes/1200/1201.html.

Note The WebFigures feature does not support the Painter renderer due to
technical limitations. If this renderer is requested, the renderer Zbuffer will
be invoked before the data is displayed on the Web page.

5-2

http://www.mathworks.com/support/tech-notes/1200/1201.html

Preparing to Implement WebFigures for MATLAB® Builder™ JA

Preparing to Implement WebFigures for MATLAB Builder
JA

In this section...

“Your Role in the WebFigure Deployment Process” on page 5-3

“What You Need to Know to Implement WebFigures” on page 5-5

“Required Products” on page 5-5

“Assumptions About the Examples” on page 5-7

“Set DISPLAY on UNIX Systems” on page 5-8

Your Role in the WebFigure Deployment Process
Depending on your role in your organization, as well as a number of other
criteria, you may need to implement either the beginning or the advanced
configuration of WebFigures.

The table WebFigures for MATLAB® Builder™ JA Deployment Roles,
Responsibilities, and Tasks on page 5-3 describes some of the different roles,
or jobs, that MATLAB Builder JA users typically perform and which method
of configuration they would most likely use when implementing WebFigures
for MATLAB Builder JA.

WebFigures for MATLAB Builder JA Deployment Roles, Responsibilities, and Tasks

Role Typical Responsibilities Tasks

MATLAB programmer • Understand end-user
business requirements and
the mathematical models
needed to support them.

• Write MATLAB code.

• Build an executable
component with MATLAB
tools (usually with support
from a Java developer).

• Write and deploy MATLAB
code, such as that in
“Assumptions About the
Examples” on page 5-7.

• Use “Quick Start:
Implementing a Custom
WebFigure” on page 5-9
to easily create a graphic,
such as a MATLAB figure,

5-3

5 Deploying a Java™ Component Over the Web

WebFigures for MATLAB Builder JA Deployment Roles, Responsibilities, and Tasks
(Continued)

Role Typical Responsibilities Tasks

• Package the component for
distribution to end users.

that the end user can
manipulate over the Web.

Java developer
(business-service developer or
front-end developer)

• Design and configure the IT
environment, architecture,
or infrastructure.

• Install deployable
applications along with
the proper version of the
MCR.

• Create mechanisms for
exposing application
functionality to the end
user.

• Use “Quick Start:
Implementing a Custom
WebFigure” on page 5-9
to easily create a graphic,
such as a MATLAB figure,
that the end user can
manipulate over the Web.

• Use “Advanced
Configuration of a
WebFigure” on page 5-16 to
create a flexible, scalable
implementation that can
meet a number of varied
architectural requirements.

5-4

Preparing to Implement WebFigures for MATLAB® Builder™ JA

What You Need to Know to Implement WebFigures
The following knowledge is assumed when you implement WebFigures for
MATLAB Builder JA:

• If you are a MATLAB programmer:

- Advanced to expert knowledge of MATLAB

• If you are a Java developer:

- Knowledge of how to create a J2EE Web site on a J2EE-compliant Web
server

- Experience deploying MATLAB applications is helpful

Required Products
Install the following products to implement WebFigures for MATLAB Builder
JA, depending on your role.

MATLAB Programmer

• MATLAB

• MATLAB Builder JA

• MATLAB Compiler

• MATLAB Compiler Runtime (see the system requirements at
http://www.mathworks.com/
support/sysreq/current_release/)

Java Developer

• Java Developer’s Kit (JDK) (see the list of supported compilers).

• J2EE compliant Web server, such as Apache® Tomcat™

• Java Runtime Environment (JRE) (see the system requirements).

5-5

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

5 Deploying a Java™ Component Over the Web

Note At this time, only J2EE Web servers that use the Sun JVM support
WebFigures.

5-6

Preparing to Implement WebFigures for MATLAB® Builder™ JA

Assumptions About the Examples

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the Java developer

To work with the examples in this chapter:

• Assume the following MATLAB function has been created:

function df = getKnot()
f = figure('Visible','off'); %Create a figure.

%Make sure it isn't visible.
knot; %Put something into figure.
df = webfigure(f); %Give figure to function

% and return the result.
close(f); %Close the figure.

end

• Assume that the function getKnot has been deployed in a Java component
(using Chapter 1, “Getting Started” for example) with a namespace of
MyComponent.MyComponentclass.

• Assume the MATLAB Compiler Runtime (MCR) has been installed. If
not, refer to “Target or End-User Installation Without MATLAB Using
the MATLAB Compiler Runtime (MCR)” on page 1-35 in the MATLAB
Compiler documentation.

5-7

5 Deploying a Java™ Component Over the Web

Set DISPLAY on UNIX Systems
If you are running a UNIX variant, such as Linux, WebFigures requires a
display to be available in the Web server’s environment in order for text
labels to be rendered properly.

Set the DISPLAY environment variable to a valid X Server before running
the WebFigure application.

5-8

Quick Start: Implementing a Custom WebFigure

Quick Start: Implementing a Custom WebFigure
MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the Java developer

Java Developer

Role Knowledge Base Responsibilities

Java
developer

• Little to no MATLAB experience

• Moderate IT Experience

• Java expert

• Minimal access to IT systems

• Integrates deployed component with
the rest of the Java application

• Integrates deployed MATLAB Figures
with the rest of the Java application

Overview
By following the Quick Start procedure, both the WebFigure service and
the page that has the WebFigure embedded in it will be set up to reside
on a single server. This configuration allows you to quickly reference your
WebFigure from a JSP page with minimal configuration.

5-9

5 Deploying a Java™ Component Over the Web

Setting Up the Web Server
Ensure that your Web server is properly configured with the required
components by doing the following:

1 Install the javabuilder.jar library. In all J2EE-compliant
Web servers, there is a common library folder for global
JAR files. Ensure that the javabuilder.jar library
(matlabroot/toolbox/javabuilder/jar/javabuilder.jar) is
installed into this folder.

Caution This file uses native resources. It is critical that it exist in
your Web server’s class PATH only once. Embedding this file into Web
applications causes errors.

2 Install the WebFigureQuickStart.warWeb application. MATLAB Builder
JA ships with a default Web application that can be deployed into your
server to test the configuration.

Ensure that the WebFigureQuickStart.war Web archive
(matlabroot/toolbox/javabuilder/jar/WebFigureQuickStart.war)
is installed on your Web server. This is usually accomplished by either
referencing it from the configuration console, or moving the file into the
server’s webapps folder.

5-10

Quick Start: Implementing a Custom WebFigure

Creating the Default WebFigure

1 Start up your Web server.

2 Open a browser and navigate to the JSP file contained in the
WebFigureQuickStart application. If you are running this locally, the URL
is:
http://hostName:portNumber/WebFigureQuickStart/WebFigureExample.jsp

The following default figure page appears:

Behind the Scenes: How a WebFigure Is Referenced
The Web application that MathWorks ships contains a reference to a servlet
in WebFigureQuickStart.war (installed in “Setting Up the Web Server” on
page 5-10). The JSP file instantiates a deployed component that is also in
WebFigureQuickStart.war and attaches it to the application scope of the
server. It uses the JSP tag to reference the figure on the page.

5-11

5 Deploying a Java™ Component Over the Web

Interacting with the Default WebFigure
Interact with the default figure on the page using your mouse:

1 Click one of the three control icons at the top of the figure to select the
desired control.

2 Select the region of the figure you want to manipulate.

3 Click and drag to manipulate the figure. For example, to zoom in the
figure, click the magnifying glass icon, then hover over the figure.

Creating a Custom WebFigure
After you access the default figure, add one of your own figures:

1 Ensure you have done the following with the MATLAB code referenced in
“Assumptions About the Examples” on page 5-7 (or your own MATLAB
code):

• Tested the code

• Compiled the code using MATLAB Builder JA

• Successfully generated the yourcomponent.jar file from the compilation.

For more information on this process, please see Chapter 1, “Getting
Started” in this guide.

2 Test to ensure that your Web server is functioning. You can do this by
creating a JSP Web page, deploying it to your server, and then attempting
to access it.

3 Create a new Web application and an associated JSP file within that
application. In the web.xml file for your Web application (in the WEB-INF
folder in a Web application), add the following reference to the built-in
WebFigureServlet:

<servlet>

<servlet-name>WebFigures</servlet-name>

<servlet-class>

com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet

</servlet-class>

</servlet>

5-12

Quick Start: Implementing a Custom WebFigure

<servlet-mapping>

<servlet-name>WebFigures</servlet-name>

<url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

4 Copy MATLABROOT/toolbox/javabuilder/webfigures/webfigures.tld,
the WebFigures customer tag handler file, to the WEB-INF folder under your
Web application directory.

5 In the JSP file, add a reference to the WebFigure tag by including the
following line of code at the beginning of the file. The URI listed here is
for example purposes only.

<%@ taglib
prefix="wf"
uri="http://www.mathworks.com/builderja/webfigures.tld"

%>

6 Add an actual WebFigure tag in the body of the page:

<wf:web-figure />

7 At this point, test that the configuration is working properly following the
changes you previously made. By having an empty WebFigure tag, the
WebFigureService automatically displays the default WebFigure and the
resulting page should resemble that achieved in “Creating the Default
WebFigure” on page 5-11.

8 Reference the previously built and deployed component from your JSP page:

a Add the following import statement to your JSP page:

<%@ page
import="yourComponentsPackage.YourComponentsClass" %>

b Add the following import statement to invoke the WebFigure:

<%@ page import="com.mathworks.toolbox.javabuilder.webfigures.WebFigure" %>

c c. Add the following statement to enable access to MWJavaObjectRef:

<%@ page import="com.mathworks.toolbox.javabuilder.*" %>

5-13

5 Deploying a Java™ Component Over the Web

9 Instantiate the deployed component and call the method that will return
the WebFigure, as in this sample code:

<%

MyComponentClass myDeployedComponent = null;

try {

//Instantiate the Deployed Component

myDeployedComponent = new MyComponentClass();

try {

WebFigure webFigure = (WebFigure)

((MWJavaObjectRef)myDeployedComponent.getKnot(1)[0]).get();

//Get the WebFigure from your function's output

// and set it to the tag

request.getSession().setAttribute("YourFigure", webFigure);

}

catch(ClassCastException e)

{

throw new Exception

("

Issue casting deployed components outputs to WebFigure", e);

}

}

catch (Exception e) {

e.printStackTrace();

}

finally {

//Dispose of the Deployed Component

// (necessary since this has native resources).

myDeployedComponent.dispose();

}

%>

<wf:web-figure name="YourFigure" scope="session"/>

10 Run your application. Your custom WebFigure appears:

5-14

Quick Start: Implementing a Custom WebFigure

5-15

5 Deploying a Java™ Component Over the Web

Advanced Configuration of a WebFigure

In this section...

“Overview” on page 5-16

“How Do WebFigures Work?” on page 5-18

“Installing WebFigureService” on page 5-19

“Getting the WebFigure Object from Your Method” on page 5-20

“Attaching a WebFigure” on page 5-21

“Using the WebFigure JSP Tag to Reference a WebFigure” on page 5-23

“Getting an Embeddable String That References a WebFigure Attached to a
Cache” on page 5-26

Java Developer

Role Knowledge Base Responsibilities

Java
developer

• Little to no MATLAB experience

• Moderate IT Experience

• Java expert

• Minimal access to IT systems

• Integrates deployed component with
the rest of the Java application

• Integrates deployed MATLAB Figures
with the rest of the Java application

Overview
The advanced configuration gives the experienced Java developer (possibly
a business service developer or front-end developer) flexibility and control
in configuring system architecture based on differing needs. For example,
with the WebFigureService and the Web page on different servers, the
administrator can optimally position the MCR (for performance reasons) or
place customer-sensitive customer data behind a security firewall, if needed.

This section describes various ways to customize the basic WebFigures
implementation described in “Quick Start: Implementing a Custom
WebFigure” on page 5-9.

5-16

Advanced Configuration of a WebFigure

The advanced configuration offers more choices and adaptability for the user
more familiar with Web environments and related technology, as illustrated
by the following graphics.

5-17

5 Deploying a Java™ Component Over the Web

How Do WebFigures Work?
When choosing the best architecture for your configuration, it is important to
understand the fundamental components that enable an application.

WebFigures is made up of several different components that work together:

• Your Web application

• Client-side code

• WebFigureService

5-18

Advanced Configuration of a WebFigure

• Your server’s cache

When you enable a user to rotate a figure, for example, you are using
standard AJAX techniques to request different static images depending on the
requested orientation. WebFiguresService (which is exposed by referencing
WebFigureServlet in web.xml) delivers the HTML and JavaScript™ to a
browser, getting the defaults for a figure, and rendering a figure in any of its
available orientations.

Your Web application calls one of your deployed components to get the specific
WebFigure, and attaches it to your server’s cache for WebFiguresService to
use later. Your application also puts an HTML reference to your WebFigure
on a page. This can either be done automatically using the JSP tag or
manually by using WebFigureHtmlGenerator. This gives the client browser
what it needs to request the client-side code.

The client-side JavaScript™ AJAX code provides a user experience similar
to that in MATLAB when using a FIGURE. It provides rotation, zooming, and
panning in a highly usable medium by using a JavaScript application that
monitors for user interaction such as dragging or clicking with a mouse, and
calls back into WebFiguresService to service those requests.

For example, when a user selects the rotate icon and clicks in the
WebFigureTag and drags it, that drag translates to coordinates and issues a
request for the new rotated image from WebFiguresService. A rotating cube
is displayed so the user knows what orientation they are looking at. Since
there is no efficient way to pass an actual WebFigure from your application to
the client-side application and then back to WebFiguresService, the server’s
built-in cache is leveraged as a central repository.

Installing WebFigureService
In order for the client-side code to call back to request images, you need
a reference to the built-in servlet in the application’s web.xml file. This
reference should look like this:

<servlet>
<servlet-name>WebFigures</servlet-name>
<servlet-class>

com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet

5-19

5 Deploying a Java™ Component Over the Web

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>WebFigures</servlet-name>
<url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

Note You can rename the servlet and its mapping. If you do, you must
reference it whenever you interact with either the WebFigureHtmlGenerator
or the JSP tag (using the root attribute) so it can call back to the servlet. It is
critical that the URL pattern you map to ends with the literal /*. This allows
all end points to be redirected to the servlet. To test this end point at any time,
navigate to it in a browser and you should see the default Web page. If you
have web.xml set correctly in your application, the URL will look something
like http://hostName:portNumber/yourWebApplication/WebFigures.

Getting the WebFigure Object from Your Method
Once you have a deployed component created using WebFigures returned by a
MATLAB method, you need to access that object.

In MATLAB Builder JA, when a WebFigure Java Object is created in
MATLAB code and returned, you convert that MWJavaObjectRef into a
regular WebFigure in order to access it. For example:

try
{

Object[] results = null;
try
{

//This assumes there is only a single option
// from your function
// and it has no inputs.
results = myDeployedComponent.getSurfPeaks(1);

//Since we know the only output is the WebFigure
// we get the MWJavaObjectRef from
// the Object Array.

5-20

Advanced Configuration of a WebFigure

//By calling "get" on the MWJavaObjectRef we
// retrieve the
// actual object from it.
WebFigure myFigure =

(WebFigure)((MWJavaObjectRef)results[0]).get();
}
finally
{

//Deployed Components use MWArrays which utilize
// Native Resources.
//The Java Garbage collector can not properly
// clean up this memory so it is important to
// dispose these resources.
MWArray.disposeArray(results);

}
}
catch(ClassCastException e)
{

throw new Exception
("WebFigure object was not

of Type WebFigure.", e);
}

Attaching a WebFigure
All components access available WebFigures is by using Web server cache
mechanisms. This allows you to leverage built-in J2EE mechanisms to scale
your servers into a farm and automatically propagate the session across the
servers.

There are a number of ways to attach a WebFigure to a scope, depending
on the state:

• Attaching to the session cache session

• Attaching to the application cache application

Attaching to the Session Cache
This cache is visible only to the current user in a system and is usually used
to store user session-specific information.

5-21

5 Deploying a Java™ Component Over the Web

Attaching to the session cache can be an ideal choice if the figure is valid only
for a specific user, at a certain time. To do this, add the following line of
code to a JSP scriptlet or a servlet:

//from a JSP scriplet or a servlet to the Session cache
request.getSession().setAttribute("myFigure", myFigure);

If you manually attached the figure, but want the JSP tag to reference it, you
can add the tag attributes:

name="myFigure" scope="session"

Note The name given to the JSP tag must match the one used to attach it to
a cache, and the name must be unique within that cache.

Attaching to the Application Cache
This cache is visible by all sessions in the current application. Attach to the
application cache if you want to attach the figure globally for every page and
servlet to use.

To attach to the Application scope, add the following line of code to a JSP
scriptlet or a servlet:

//from a JSP scriplet or a servlet to the Application cache

request.getSession().getServletContext().setAttribute("GlobalFigure",

myFigure);

If you manually attached the figure, but want the JSP tag to reference it, you
can add the tag attributes:

name="GlobalFigure" scope="application"

Note The name given to the JSP tag must match the one used to attach it to
a cache, and the name must be unique within that cache.

5-22

Advanced Configuration of a WebFigure

Using the WebFigure JSP Tag to Reference a
WebFigure
Once the WebFigure has been retrieved from the function output (see “Getting
the WebFigure Object from Your Method” on page 5-20), you can attach it to
one of your server’s caches and reference it from the JSP tag.

Initializing the JSP Tag
Reference the tag library by adding the following line to a JSP page:

<%@ taglib
prefix="wf"
uri="http://www.mathworks.com/builderja/webfigures.tld"

%>

Note This code references the .tld file from the WEB-INF folder under your
web application folder. This URI must be typed exactly as shown above for
the name to properly resolve the reference. Once this tag has been referenced,
you can add tags to the page similar to this:

<wf:web-figure />

Note If you use an empty tag as shown above, the default WebFigure
appears. To bind the tag to your WebFigure, see “Attaching a WebFigure”
on page 5-21.

5-23

5 Deploying a Java™ Component Over the Web

Attributes of a WebFigure Tag
The key attributes for the WebFigure tag are name and scope. For each tag,
use these parameters to indicate which figure to use in which cache on your
server. Assuming you have attached a figure to the session cache using the
string MyFigure (as shown in the “Attaching a WebFigure” on page 5-21),
the JSP tag resembles this:

<wf:web-figure name="MyFigure" scope="session"/>

Use this table to reference the following WebFigure tag attributes.

WebFigure Tag Attributes and Their Default Values

Attribute Name Description Optional? Default Value

name Name used when
attaching your figure
to a cache. Case
sensitive.

Yes The name of
the default
WebFigure built into
WebFigureService. If
you provide an empty
WebFigure tag, this
figure is displayed.

scope Scope that your figure
has been saved to
(either application
or session).

Yes If this is not specified,
an error is thrown
unless the name is
also not specified. In
this case, the default
figure is attached to
the session scope and
is used.

style Style attribute that
you want embedded
and attached to the
iFrame.

Yes If this is not passed, a
basic iFrame is used.

height Height of the iFrame
that will be embedded.

Yes If this is not passed,
the height of the
WebFigure is
retrieved from cache.

5-24

Advanced Configuration of a WebFigure

WebFigure Tag Attributes and Their Default Values (Continued)

Attribute Name Description Optional? Default Value

width Width of the iFrame
that will be embedded.

Yes If this is not
passed, the width
of the WebFigure is
retrieved from cache.

root Name used to map the
WebFiguresServlet
for a figure.

Yes If this is not specified,
it is assumed to
be mapped to
WebFigures. If it is
specified to a relative
servlet end point, that
is used.

5-25

5 Deploying a Java™ Component Over the Web

Getting an Embeddable String That References a
WebFigure Attached to a Cache
If you do not want to use the WebFigure JSP tag to display the figure, or want
a servlet to display it directly, use this method to get a snippet of HTML that
will embed an iFrame containing the figure in another page.

1 Create an instance of the WebFigureHtmlGenerator class using either a
scriptlet or a servlet. The constructor for this class has three overloads:

//The import statement needed to invoke this class

import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;

//WebFigureHtmlGenerator(HttpServletRequest servletRequest)

//This overload just takes the ServletRequest and will map the

// embed string to the same server and assumes that the

// WebFiguresService was mapped to WebFigures"

WebFigureHtmlGenerator htmlGenerator =

WebFigureHtmlGenerator(servletRequest);

//OR

//WebFigureHtmlGenerator(String webFigureServletNameMapping, HttpServletRequest

// servletRequest)

//This overload takes the ServletRequest and the name that

// the WebFigureServlet was mapped to.

//It will reference this servlet on the same server

WebFigureHtmlGenerator htmlGenerator =

WebFigureHtmlGenerator("SomeServletMappingName", servletRequest);

//OR

//WebFigureHtmlGenerator(String absolutePathName)

//This overload takes the absolute URL path to a server that has

// WebFiguresService running.

//This would be used if you have a cluster of servers that are all running

// WebFigureService

// a load balancer (all sharing cache state). Use

// this parameter to reference that base load balancer URL.

WebFigureHtmlGenerator htmlGenerator =

5-26

Advanced Configuration of a WebFigure

WebFigureHtmlGenerator("http://someLoadBalancer/someWebApplication/

WebFigureServletNameMapping");

2 Call the method to get the embedded string (getFigureEmbedString). Use
this table to specify appropriate attributes:

Attribute Name Attribute Type Description Optional Default Value

figure WebFigure WebFigure for
which you want
to create the
embedded string.

Yes This is used to
determine the
figure’s default
height and width
if no other is
provided .

name String Name used when
attaching your
figure to a cache.
Case sensitive.

No Not optional

scope String Scope that figure
has been saved to
(application or
session).

No Not optional

style String Embedded
attribute you
want attached to
the iFrame.

Yes If this is not
passed, a basic
iFrame is used.

height String Height of the
iFrame that will
be embedded.

Yes If this is not
passed, the
height of the
WebFigure is
retrieved from
cache. If the
WebFigure
cannot be found,
the MATLAB
default height for
a figure (420) is
used.

5-27

5 Deploying a Java™ Component Over the Web

Attribute Name Attribute Type Description Optional Default Value

width String Width of the
iFrame that will
be embedded.

Yes If this is not
passed, the width
of the WebFigure
is retrieved
from cache. If
the WebFigure
cannot be found,
the MATLAB
default width for
a figure (560) is
used.

5-28

6

Working with MATLAB
Figures and Images

• “Your Role in Working with Figures and Images” on page 6-2

• “Creating and Modifying a MATLAB Figure” on page 6-3

• “Working with MATLAB Figure and Image Data” on page 6-6

6 Working with MATLAB® Figures and Images

Your Role in Working with Figures and Images
When you work with figures and images as a MATLAB programmer, you are
responsible for:

• Preparing a MATLAB figure for export

• Making changes to the figure (optional)

• Exporting the figure

• Cleaning up the figure window

When you work with figures and images as a front-end Web developer, some
of the tasks you are responsible for include:

• Getting a WebFigure from a deployed component

• Getting raw image data from a deployed component converted into a byte
array

• Getting a buffered image from a component

• Getting a buffered image or a byte array from a WebFigure

6-2

Creating and Modifying a MATLAB® Figure

Creating and Modifying a MATLAB Figure

In this section...

“Preparing a MATLAB Figure for Export” on page 6-3

“Changing the Figure (Optional)” on page 6-3

“Exporting the Figure” on page 6-4

“Cleaning Up the Figure Window” on page 6-4

“Example: Modifying and Exporting Figure Data” on page 6-5

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the Java developer

Preparing a MATLAB Figure for Export

1 Create a figure window. For example:

h = figure;

2 Add graphics to the figure. For example:

surf(peaks);

Changing the Figure (Optional)
Optionally, you can change the figure numerous ways. For example:

Alter Visibility

set(h, 'Visible', 'off');

6-3

6 Working with MATLAB® Figures and Images

Change Background Color

set(h, 'Color', [.8,.9,1]);

Alter Orientation and Size

width=500;
height=500;
rotation=30;
elevation=30;
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);

Exporting the Figure
Export the contents of the figure in one of two ways:

WebFigure
To export as a WebFigure:

returnFigure = webfigure(h);

Image Data
To export image data, for example:

imgform = 'png';
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imgForm, ...
`outputType', `uint8');

Cleaning Up the Figure Window
To close the figure window:

close(h);

6-4

Creating and Modifying a MATLAB® Figure

Example: Modifying and Exporting Figure Data

WebFigure
function returnFigure = getWebFigure()
h = figure;
set(h, 'Visible', 'off');
surf(peaks);
set(h, 'Color', [.8,.9,1]);
returnFigure = webfigure(h);
close(h);

Image Data
function returnByteArray = getImageDataOrientation(height, width,

elevation, rotation, imageFormat)
h = figure;
set(h, 'Visible', 'off');
surf(peaks);
set(h, 'Color', [.8,.9,1]);
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imageFormat, ...
`outputType', `int8');

close(h);

6-5

6 Working with MATLAB® Figures and Images

Working with MATLAB Figure and Image Data

In this section...

“For More Comprehensive Examples” on page 6-6

“Working with Figures” on page 6-6

“Working with Images” on page 6-7

Front-End Web Developer

Role Knowledge Base Responsibilities

Front-end Web
developer

• No MATLAB experience

• Minimal IT experience

• Expert at usability and Web
page design

• Minimal access to IT systems

• Expert at JSP

• As service consumer, manages
presentation and usability

• Creates front-end applications

• Integrates MATLAB code with
language-specific frameworks and
environments

• Integrates WebFigures with the rest
of the Web page

For More Comprehensive Examples
This section contains code snippets intended to demonstrate specific
functionality related to working with figure and image data.

To see these snippets in the context of more fully-functional multi-step
examples, see the MATLAB Application Deployment Web Example Guide.

Working with Figures

Getting a Figure From a Deployed Component
For information about how to retrieve a figure from a deployed component,
see Chapter 5, “Deploying a Java Component Over the Web”

6-6

Working with MATLAB® Figure and Image Data

Working with Images

Getting Encoded Image Bytes from an Image in a Component

Java

public byte[] getByteArrayFromDeployedComponent()
{

Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;
try
{

byteImageOutput =
deployment.getImageDataOrientation(

1, //Number Of Outputs
500, //Height
500, //Width
30, //Elevation
30, //Rotation
"png" //Image Format

);

numericImageByteArray =
(MWNumericArray)byteImageOutput[0];

return numericImageByteArray.getByteData();
}
finally
{

MWArray.disposeArray(byteImageOutput);
}

}

Getting a Buffered Image in a Component

Java

public byte[] getByteArrayFromDeployedComponent()
{

6-7

6 Working with MATLAB® Figures and Images

Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;
try
{

byteImageOutput =
deployment.getImageDataOrientation(

1, //Number Of Outputs
500, //Height
500, //Width
30, //Elevation
30, //Rotation
"png" //Image Format

);

numericImageByteArray =
(MWNumericArray)byteImageOutput[0];

return numericImageByteArray.getByteData();
}
finally
{

MWArray.disposeArray(byteImageOutput);
}

}

public BufferedImage getBufferedImageFromDeployedComponent()
{

try
{

byte[] imageByteArray =
getByteArrayFromDeployedComponent()

return ImageIO.read
(new ByteArrayInputStream(imageByteArray));

}
catch(IOException io_ex)
{

io_ex.printStackTrace();
}

}

6-8

7

Creating Scalable Web
Applications Using RMI

• “Using Remote Method Invocation (RMI)” on page 7-2

• “Before You Use RMI” on page 7-4

• “Running the Client and Server on a Single Machine” on page 7-5

• “Running the Client and Server on Separate Machines” on page 7-9

• “Using Native Java with Cell Arrays and Struct Arrays” on page 7-10

• “For More RMI Examples” on page 7-17

7 Creating Scalable Web Applications Using RMI

Using Remote Method Invocation (RMI)
Server Administrator

Server
administrator

• No MATLAB experience

• IT Expert

• Understands server
architectures

• Understands language-specific
frameworks and environments

• Manages uptime of production
servers

• Ensures that services are scalable
enough to meet SLA requirements

• Maintains multiple versions of the
MCR and Deployed component
versions

• Manages framework versions

You can expand your application’s throughput capacity by taking advantage
of the MATLAB Builder JA product’s use of RMI, the Java native remote
procedure call (RPC) mechanism. The builder’s implementation of RMI
technology provides for automatic generation of interface code to enable
components to start in separate processes, on one or more computers, making
your applications scalable and adaptable to future performance demands.

The following example uses RMI in the following ways:

• Running a client and server on a single machine

• Running a client and server on separate machines

Tip While running on UNIX, ensure you use : as the path separator in calls
to java and javac.

; is used as a path separator only on Windows.

7-2

Using Remote Method Invocation (RMI)

7-3

7 Creating Scalable Web Applications Using RMI

Before You Use RMI
See “Web Application Example” on page 4-48 for information on properly
setting up your Java environment before you run the example in this section.

7-4

Running the Client and Server on a Single Machine

Running the Client and Server on a Single Machine
The following example shows how to run two separate processes to initialize
MATLAB struct arrays.

Note You do not need the MCR installed on the client side. Return values
from the MCR can be automatically converted using the marshalOutputs
Boolean in the RemoteProxy class. See the API documentation link in the
“Documentation Set” from the product roadmap.

1 Compile the MATLAB Builder JA component by issuing the following
command at the MATLAB command prompt:

mcc -W 'java:dataTypesComp,dataTypesClass'
createEmptyStruct.m

updateField.m -v

2 Compile the server Java code by issuing the following javac
command. Ensure there are no spaces between javabuilder.jar; and
folder_containing_component.

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
folder_containing_component\dataTypesComp.jar
DataTypesServer.java

You can find DataTypesServer.java in:

matlabroot\toolbox\javabuilder\Examples\RMIExamples
\DataTypes\DataTypesDemoJavaApp

3 Compile the client Java code by issuing the following javac command.
Ensure there are no spaces between javabuilder.jar; and folder
containing component.

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
folder_with_component\dataTypesComp.jar DataTypesClient.java

7-5

7 Creating Scalable Web Applications Using RMI

4 Run the client and server as follows:

a Open two command windows on DOS or UNIX, depending on the
platform you are using.

b If running Windows, ensure that matlabroot/runtime/arch is defined
on the system path. If running UNIX, ensure LD_LIBRARY_PATH and
DYLD_LIBRARY_PATH are set properly.

c Run the server by issuing the following java command. Ensure there
are no spaces between dataTypesComp.jar; and matlabroot.

java -classpath
.;folder_with_component\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar
-Djava.rmi.server.codebase=

"file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar
file:///folder_containing_component/dataTypesComp.jar"

DataTypesServer

d Run the client by issuing the following java command. Ensure there are
no spaces between dataTypesComp.jar; and matlabroot.

java -classpath
.;folder_containing_component\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar
DataTypesClient

You can find DataTypesClient.java in:
matlabroot\toolbox\javabuilder\Examples\RMIExamples\DataTypes
\DataTypesDemoJavaApp.

If successful, the following output appears in the Command Window
running the server:

Please wait for the server registration notification.

Server registered and running successfully!!

EVENT 1: Initializing the structure on server

and sending it to client:

Initialized empty structure:

7-6

Running the Client and Server on a Single Machine

Name: []

Address: []

##################################

EVENT 3: Partially initialized structure as received by server:

Name: []

Address: [1x1 struct]

Address field as initialized from the client:

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

##################################

EVENT 4: Updating 'Name' field before

sending the structure back to the client:

Name: 'The MathWorks'

Address: [1x1 struct]

##################################

If successful, the following output appears in the Command Window
running the client:

Running the client application!!

EVENT 2: Initialized structure as received in client applications:

Name: []

Address: []

Updating the 'Address' field to :

Street: '3, Apple Hill Drive'

7-7

7 Creating Scalable Web Applications Using RMI

City: 'Natick'

State: 'MA'

Zip: '01760'

#################################

EVENT 5: Final structure as received by client:

Name: 'The MathWorks'

Address: [1x1 struct]

Address field:

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

#################################

7-8

Running the Client and Server on Separate Machines

Running the Client and Server on Separate Machines
To implement RMI with a client on one machine and a server on another,
you must:

1 Change how the server is bound to the system registry.

2 Redefine how the client accesses the server.

After this is done, follow the steps in “Running the Client and Server on a
Single Machine” on page 7-5.

7-9

7 Creating Scalable Web Applications Using RMI

Using Native Java with Cell Arrays and Struct Arrays

In this section...

“Why Use Native Type Cell Arrays and Struct Arrays?” on page 7-10

“Before You Use Native Type Data Marshaling with Cells and Structs”
on page 7-11

“The Native Java Cell and Struct Example” on page 7-12

Middle-Tier Developer

Middle-tier
developer

• Little to no MATLAB
experience

• Moderate IT Experience

• Expert at business logic and
services tier

• Java expert

• Minimal access to IT systems

• Expert at J2EE

• Expert at Web services

• Integrates deployed component
with the rest of the J2EE system
by converting MATLAB data types
(MWArrays) to the Java Business
logic objects

Why Use Native Type Cell Arrays and Struct Arrays?
In Java, there is no direct representation available for MATLAB-specific
struct and cell arrays.

As a result, when an instance of MWStructArray or MWCellArray is
converted to a Java native type using the toArray() method, the output is a
multi-dimensional Object array which can be difficult to process.

When you use MATLAB® Builder™ JA components with RMI, however, you
have control over how the server sends the results of MATLAB function calls
back to the client. The server can be set to marshal the output to the client as
an MWArray (com.mathworks.toolbox.javabuilder package) sub-type or as a

7-10

Using Native Java™ with Cell Arrays and Struct Arrays

Java™ native data type. The Java native data type representation of MWArray
subtypes is obtained by invoking the toArray() method by the server.

Using Java native representations of MATLAB struct and cell arrays is
recommended if both of these are true:

• You have MATLAB functions on a server with MATLAB struct or cell data
types as inputs or outputs

• You do not want or need to install an MCR on your client machines

Using Native Types Does Not Require a Client-Side MCR
The classes in the com.mathworks.extern.java package
(in javabuilder.jar) do not need an MCR. The names
of the classes in this package are the same as those in
com.mathworks.toolbox.javabuilder — allowing the end-user to
easily create instances of com.mathworks.extern.java.MWStructArray
or com.mathworks.extern.java.MWCellArray that work the same as the
like-named classes in com.mathworks.toolbox.javabuilder— on a machine
that does not have an MCR.

The availability of an MCR on the client machine dictates how the server
should be set for marshaling MATLAB functions, since the MWArray class
hierarchy can be used only with an MCR. If the client machine does not have
an MCR available, the server returns the output of toArray() for cell or
struct arrays as instances of com.mathworks.extern.java.MWStructArray
or com.mathworks.extern.java.MWCellArray.

Before You Use Native Type Data Marshaling with
Cells and Structs
Even though client machines don’t need to have an MCR, they do need to
have javabuilder.jar since it contains the com.mathworks.extern.java
package.

Please refer to the Javadoc for more information about classes in all MATLAB
Builder JA packages.

7-11

7 Creating Scalable Web Applications Using RMI

The Native Java Cell and Struct Example

Before You Run the Example
Before you run this example, note the following:

• This example demonstrates how to implement RMI when the client and
the server are running on the same machine. See “Running the Client and
Server on Separate Machines” on page 7-9 if you would like to do otherwise.

• On UNIX, use : as the path separator in calls to java and javac. Use ;
as a path separator on Windows.

• Only update the server system path with the location of the MCR. The
client does not need access to the MCR.

• This example is shipped in the
matlab\toolbox\javabuilder\Examples\RMIExamples\NativeCellStruct
directory.

• Ensure that:

- On Windows systems, matlabroot/runtime/arch is on the system path.

- On UNIX systems, LD_LIBRARY_PATH and DYLD_LIBRARY_PATH are set
properly. See “Modifying the Path” in the MATLAB Compiler User’s
Guide for further information on setting the path.

Running the Example

Note Be sure to enter the following as single, unbroken commands.

1 Use the following mcc command to build the component:

mcc -W 'java:dataTypesComp,dataTypesClass' createEmptyStruct.m
updateField.m -v

2 Compile the server’s Java code:

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

7-12

Using Native Java™ with Cell Arrays and Struct Arrays

directory_containing_component\dataTypesComp.jar
NativeCellStructServer.java

3 Compile the client’s Java code:

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
directory containing component\dataTypesComp.jar
NativeCellStructClient.java

4 Prepare to run the server and client applications by opening two DOS or
UNIX command windows—one for client and one for server.

5 Run the server:

java -classpath
.;directory_containing_component\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar
-Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/
jar/javabuilder.jar file:///
directory_containing_component/dataTypesComp.jar"
NativeCellStructServer

6 Run the client:

java -classpath
.;directory_containing_component\dataTypesComp.jar;
matlabroot\toolbox\javabuilder\jar\javabuilder.jar
NativeCellStructClient

7-13

7 Creating Scalable Web Applications Using RMI

7 If your application has run successfully, the output will display as follows:

• Server output:

Please wait for the server registration notification.
Server registered and running successfully!!

EVENT 1: Initializing the structure on server and
sending it to client:
Initialized empty structure:

Name: ' '
Address: []

##################################

EVENT 3: Partially initialized structure as received
by server:

Name: ' '
Address: [1x1 struct]

Address field as initialized from the client:

Street: '3, Apple Hill Drive'
City: 'Natick'
State: 'MA'
Zip: '01760'

##################################

EVENT 4: Updating 'Name' field before sending the
structure back to the client

Name: 'The MathWorks'
Address: [1x1 struct]

##################################

7-14

Using Native Java™ with Cell Arrays and Struct Arrays

• Client output:

Running the client application!!

EVENT 2: Initialized structure as received in client
applications:

1x1 struct array with fields:
Name
Address

Updating the 'Address' field to :

1x1 struct array with fields:
Street
City
State
Zip

#################################

EVENT 5: Final structure as received by client:

1x1 struct array with fields:
Name
Address

Address field:

1x1 struct array with fields:
Street
City
State
Zip

#################################

7-15

7 Creating Scalable Web Applications Using RMI

7-16

For More RMI Examples

For More RMI Examples
For more examples of RMI implementation, see the examples in
matlabroot/toolbox/javabuilder/Examples/RMIExamples.

7-17

7 Creating Scalable Web Applications Using RMI

7-18

8

Troubleshooting

8 Troubleshooting

Common MATLAB Builder JA Error Messages
Exception in thread "main" java.lang.UnsatisfiedLinkError: Failed to
find the library mclmcrrt712.dll, required by MATLAB Builder JA,
on java.library.path

Install the MCR or add it to the MATLAB path.

8-2

9

Reference Information for
Java

• “Requirements for the MATLAB® Builder JA Product” on page 9-2

• “Data Conversion Rules” on page 9-9

• “Programming Interfaces Generated by the MATLAB® Builder JA Product”
on page 9-13

• “MWArray Class Specification” on page 9-18

9 Reference Information for Java™

Requirements for the MATLAB Builder JA Product

In this section...

“System Requirements” on page 9-2

“Path Modifications Required for Accessibility” on page 9-3

“Limitations and Restrictions” on page 9-3

“Settings for Environment Variables (Development Machine)” on page 9-4

System Requirements
System requirements and restrictions on use for the MATLAB Builder JA
product are as follows:

• All requirements for the MATLAB Compiler product; see Installation and
Configuration in the MATLAB Compiler documentation.

• Java Development Kit must be installed.

• Java Runtime Environment (JRE) that is used by MATLAB and MCR.

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it
may be possible to run MCR-based components with non-Sun JDK’s under
some circumstances—however, compatibility is not guaranteed.

9-2

Requirements for the MATLAB® Builder™ JA Product

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®,
you must add the following DLLs to your Windows path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

Limitations and Restrictions
In general, limitations and restrictions on the use of the MATLAB Builder
JA product are the same as those for the MATLAB Compiler product. See
“Limitations and Restrictions” in the MATLAB Compiler documentation for
details.

In addition, the MATLAB Builder JA product does not support MATLAB
object data types (for example, Time Series objects). In other words, MATLAB
objects can not "pass" the boundary of MATLAB/Java, but you are free to
use objects in your MATLAB code.

On 64-bit Mac systems, you need to include the -d64 flag in the Java
command used to run the application. This is because by default the Java
Virtual Machine (JVM) starts in 32-bit client mode on these machines and
the MATLAB Compiler Runtime (MCR) requires a 64-bit JVM. For example
when running “The Magic Square Example” on page 1-18, you should use
the following command:

matlabroot/sys/java/jre/architecture/jre_folder/bin/java
-classpath

:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
MagicDemoJavaApp/magicsquare/distrib/magicsquare.jar -d64

getmagic 5

Since Leopard (Mac OS X 10.5), is capable of running both 32-bit and 64-bit
operating systems, including the -d64 flag is only required if you are running
in 64-bit mode.

9-3

9 Reference Information for Java™

Settings for Environment Variables (Development
Machine)
Before starting to program, you must set the environment on your
development machine to be compatible with the MATLAB Builder JA product.

Specify the following environment variables:

• “JAVA_HOME Variable” on page 9-4

• “Java CLASSPATH Variable” on page 9-5

• “Native Library Path Variables” on page 9-7

JAVA_HOME Variable
The MATLAB Builder JA product uses the JAVA_HOME variable to locate the
Java Software Development Kit (SDK) on your system. It also uses this
variable to set the versions of the javac.exe and jar.exe files it uses during
the build process.

Note If you do not set JAVA_HOME, the builder assumes that \jdk\bin is on
the system path.

Setting JAVA_HOME on Windows (Development Machine). If you are
working on Windows, set your JAVA_HOME variable by entering the following
command in your DOS command window. (In this example, your Java SDK
is installed in folder C:\java\jdk.)

set JAVA_HOME=C:\java\jdk\j2sdkversion_number

Alternatively, you can add jdk_folder/bin to the system path. For example:

set PATH=%PATH%;c:\java\jdk\j2sdkversion_number\bin

You can also set these variables globally using the Windows Control Panel.
Consult your Windows documentation for instructions on setting system
variables.

9-4

Requirements for the MATLAB® Builder™ JA Product

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Sun JDK and JRE. A certain
measure of cross-version compatibility resides in the Sun software and it may
be possible to run MCR-based components with non-Sun JDK’s under some
circumstances—however, compatibility is not guaranteed.

Setting JAVA_HOME on UNIX (Development Machine). If you are
working on a UNIX system, set your JAVA_HOME variable by entering the
following commands at the command prompt. (In this example, your Java
SDK is installed in folder /java/jdk/j2sdkversion_number.)

setenv JAVA_HOME /java/jdk/j2sdkversion_number

Alternatively, you can add jdk_folder\bin to the system path.

Java CLASSPATH Variable
To build and run a Java application that uses a MATLAB Builder JA
generated component, the system needs to find .jar files containing the
MATLAB libraries and the class and method definitions that you have
developed and built with the builder. To tell the system how to locate the
.jar files it needs, specify a classpath either in the javac command or in
your system environment variables.

Java uses the CLASSPATH variable to locate user classes needed to compile or
run a given Java class. The class path contains folders where all the .class
and/or .jar files needed by your program reside. These .jar files contain any
classes that your Java class depends on.

When you compile a Java class that uses classes contained in the
com.mathworks.toolbox.javabuilder package, you need to include a file

9-5

9 Reference Information for Java™

called javabuilder.jar on the Java class path. This file comes with the
builder; you can find it in the following folder:

matlabroot/toolbox/javabuilder/jar % (development machine)
mcrroot/toolbox/javabuilder/jar % (end-user machine)

where matlabroot refers to the root folder into which the MATLAB
installer has placed the MATLAB files, and mcrroot refers to the
root folder under which MCR is installed. The builder automatically
includes this .jar file on the class path when it creates the component.
To use a class generated by the builder, you need to add this
matlabroot/toolbox/javabuilder/jar/javabuilder.jar to the class path.

In addition, you need to add to the class path the .jar file created by the
builder for your compiled .class files.

Example: Setting CLASSPATH on Windows. Suppose your MATLAB
libraries are installed in C:\matlabroot\runtime\win32, and your
component .jar files are in C:\mycomponent.

Note For matlabroot, substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

To set your CLASSPATH variable on your development machine, enter the
following command at the DOS command prompt:

set CLASSPATH=.;C:\matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

C:\mycomponent\mycomponent.jar

Alternatively, if the Java SDK is installed, you can specify the class path on
the Java command line as follows. When entering this command, ensure
there are no spaces between path names in the matlabroot argument.
For example, there should be no space between javabuilder.jar; and
c:\mycomponent\mycomponent.jar in the following example:

javac

-classpath .;C:\matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

C:\mycomponent\mycomponent.jar usemyclass.java

9-6

Requirements for the MATLAB® Builder™ JA Product

where usemyclass.java is the file to be compiled.

It is recommended that you globally add any frequently used class paths to
the CLASSPATH system variable via the Windows Control Panel.

Example: Setting CLASSPATH on UNIX (Development Machine).
Suppose your UNIX environment is as follows:

• Your MATLAB libraries are installed in /matlabroot/runtime/arch,
(where arch is the operating system of the machine.

• Your component .jar files are in /mycomponent.

To set your CLASSPATH variable, enter the following command at the prompt:

setenv CLASSPATH .:/matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

/mycomponent/mycomponent.jar

Like Windows, you can specify the class path directly on the Java command
line. To compile usemyclass.java, type the following:

javac -classpath
.:/matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
/mycomponent/mycomponent.jar usemyclass.java

where usemyclass.java is the file to be compiled.

Native Library Path Variables
The operating system uses the native library path to locate native libraries
that are needed to run your Java class. See the following list of variable
names according to operating system:

Windows PATH

Linux LD_LIBRARY_PATH

Macintosh DYLD_LIBRARY_PATH

For information on how to set these path variables, see the following topics in
“Standalone Applications” of the MATLAB Compiler documentation:

9-7

9 Reference Information for Java™

• See Testing the Application to set your path on a development machine

• See Running the Application to set your path on an end-user machine

9-8

Data Conversion Rules

Data Conversion Rules

In this section...

“Java to MATLAB Conversion” on page 9-9

“MATLAB to Java Conversion” on page 9-11

“Unsupported MATLAB Array Types” on page 9-12

Java to MATLAB Conversion
The following table lists the data conversion rules for converting Java data
types to MATLAB types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

When calling an MWArray class method constructor, supplying a specific data
type causes the builder to convert to that type instead of the default.

Java to MATLAB Conversion Rules

Java Type MATLAB Type

double double

float single

byte int8

int int32

short int16

long int64

char char

9-9

9 Reference Information for Java™

Java to MATLAB Conversion Rules (Continued)

Java Type MATLAB Type

boolean logical

java.lang.Double double

java.lang.Float single

java.lang.Byte int8

java.lang.Integer int32

java.lang.Long int64

java.lang.Short int16

java.lang.Number double

Note Subclasses of java.lang.Number not listed above are
converted to double.

java.lang.Boolean logical

java.lang.Character char

java.lang.String char

Note A Java string is converted to a 1-by-N array of char with
N equal to the length of the input string.

An array of Java strings (String[]) is converted to an M-by-N
array of char, with M equal to the number of elements in the
input array and N equal to the maximum length of any of the
strings in the array.

Higher dimensional arrays of String are converted similarly.

In general, an N-dimensional array of String is converted to an
N+1 dimensional array of char with appropriate zero padding
where supplied strings have different lengths.

9-10

Data Conversion Rules

MATLAB to Java Conversion
The following table lists the data conversion rules for converting MATLAB
data types to Java types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

MATLAB to Java Conversion Rules

MATLAB Type Java Type (Primitive) Java Type (Object)

cell Not applicable Object

Note Cell arrays are constructed and
accessed as arrays of MWArray.

structure Not applicable Object

Note Structure arrays are constructed and
accessed as arrays of MWArray.

char char java.lang.Character

double double java.lang.Double

single float java.lang.Float

int8 byte java.lang.Byte

int16 short java.lang.Short

int32 int java.lang.Integer

int64 long java.lang.Long

9-11

9 Reference Information for Java™

MATLAB to Java Conversion Rules (Continued)

MATLAB Type Java Type (Primitive) Java Type (Object)

uint8 byte java.lang.ByteJava has no unsigned type
to represent the uint8 used in MATLAB.
Construction of and access to MATLAB
arrays of an unsigned type requires
conversion.

uint16 short java.lang.shortJava has no unsigned
type to represent the uint16 used in
MATLAB. Construction of and access
to MATLAB arrays of an unsigned type
requires conversion.

uint32 int java.lang.IntegerJava has no unsigned
type to represent the uint32 used in
MATLAB. Construction of and access
to MATLAB arrays of an unsigned type
requires conversion.

uint64 long java.lang.LongJava has no unsigned type
to represent the uint64 used in MATLAB.
Construction of and access to MATLAB
arrays of an unsigned type requires
conversion.

logical boolean java.lang.Boolean

Function handle Not supported

Java class Not supported

User class Not supported

Unsupported MATLAB Array Types
Java has no unsigned types to represent the uint8, uint16, uint32, and
uint64 types used in MATLAB. Construction of and access to MATLAB
arrays of an unsigned type requires conversion.

9-12

Programming Interfaces Generated by the MATLAB® Builder™ JA Product

Programming Interfaces Generated by the MATLAB
Builder JA Product

In this section...

“APIs Based on MATLAB Function Signatures” on page 9-13

“Standard API” on page 9-14

“mlx API” on page 9-16

“Code Fragment: Signatures Generated for the myprimes Example” on
page 9-16

APIs Based on MATLAB Function Signatures
The builder generates two kinds of interfaces to handle MATLAB function
signatures.

• A standard signature in Java

This interface specifies input arguments for each overloaded method as
one or more input arguments of class java.lang.Object or any subclass
(including subclasses of MWArray). The standard interface specifies return
values, if any, as a subclass of MWArray.

• mlx API

This interface allows the user to specify the inputs to a function as an
Object array, where each array element is one input argument. Similarly,
the user also gives the mlx interface a preallocated Object array to hold
the outputs of the function. The allocated length of the output array
determines the number of desired function outputs.

The mlx interface may also be accessed using java.util.List containers
in place of Object arrays for the inputs and outputs. Note that if List
containers are used, the output List passed in must contain a number of
elements equal to the desired number of function outputs.

For example, this would be incorrect usage:

java.util.List outputs = new ArrayList(3);
myclass.myfunction(outputs, inputs); // outputs 0 elements!

9-13

9 Reference Information for Java™

And this would be the correct usage:

java.util.List outputs = Arrays.asList(new Object[3]);
myclass.myfunction(outputs, inputs); // list has 3 elements

Typically you use the standard interface when you want to call MATLAB
functions that return a single array. In other cases you probably need to
use the mlx interface.

Standard API
The standard calling interface returns an array of one or more MWArray
objects.

The standard API for a generic function with none, one, more than one, or a
variable number of arguments, is shown in the following table.

Arguments API to Use

Generic MATLAB function
function [Out1, Out2, ...,

varargout] =
foo(In1, In2, ...,
InN, varargin)

API if there are no input
arguments public Object[] foo(

int numArgsOut
)

API if there is one input
argument public Object[] foo(

int numArgsOut,
Object In1
)

9-14

Programming Interfaces Generated by the MATLAB® Builder™ JA Product

Arguments API to Use

API if there are two to N
input arguments public Object[] foo(

int numArgsOut,
Object In1,
Object In2,
...
Object InN
)

API if there are optional
arguments, represented by
the varargin argument

public Object[] foo(
int numArgsOut,
Object in1,
Object in2,
...,

Object InN,
Object varargin
)

Details about the arguments for these samples of standard signatures are
shown in the following table.

Argument Description Details About Argument

numArgsOut Number of
outputs

An integer indicating the number of
outputs you want the method to return.
To return no arguments, omit this
argument.

The value of numArgsOut must be less
than or equal to the MATLAB function
nargout.

The numArgsOut argument must always
be the first argument in the list.

In1, In2,
...InN

Required input
arguments

All arguments that follow numArgsOut
in the argument list are inputs to the
method being called.

9-15

9 Reference Information for Java™

Argument Description Details About Argument

Specify all required inputs first. Each
required input must be of class MWArray
or any class derived from MWArray.

varargin Optional inputs You can also specify optional inputs if
your MATLAB code uses the varargin
input: list the optional inputs, or put
them in an Object[] argument, placing
the array last in the argument list.

Out1, Out2,
...OutN

Output
arguments

With the standard calling interface, all
output arguments are returned as an
array of MWArrays.

mlx API
For a function with the following structure:

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ...,

InN, varargin)

The builder generates the following API, as the mlx interface:

public void foo (List outputs, List inputs) throws MWException;
public void foo (Object[] outputs, Object[] inputs)

throws MWException;

Code Fragment: Signatures Generated for the
myprimes Example
For a specific example, look at the myprimes method. This method has one
input argument, so the builder generates three overloaded methods in Java.

When you add myprimes to the class myclass and build the component, the
builder generates the myclass.java file. A fragment of myclass.java is listed
to show overloaded implementations of the myprimesmethod in the Java code.

9-16

Programming Interfaces Generated by the MATLAB® Builder™ JA Product

The standard interface specifies inputs to the function within the argument
list and outputs as return values. The second implementation demonstrates
the feval interface, the third implementation shows the interface to be used
if there are no input arguments, and the fourth shows the implementation
to be used if there is one input argument. Rather than returning function
outputs as a return value, the feval interface includes both input and output
arguments in the argument list. Output arguments are specified first,
followed by input arguments.

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */
public void myprimes(Object[] lhs, Object[] rhs)

throws MWException
{

(implementation omitted)
}

/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/
public Object[] myprimes(int nargout, Object n)

throws MWException
{

(implementation omitted)
}

See “APIs Based on MATLAB Function Signatures” on page 9-13 for details
about the interfaces.

9-17

9 Reference Information for Java™

MWArray Class Specification
For complete reference information about the MWArray class hierarchy,
see com.mathworks.toolbox.javabuilder.MWArray, which is in the
matlabroot/help/toolbox/javabuilder/MWArrayAPI/ folder.

Note For matlabroot, substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

9-18

10

Function Reference

deploytool

Purpose Open GUI for MATLAB Builder JA and MATLAB Compiler products

Syntax deploytool

Description The deploytool command opens the Deployment Tool window, which
is the graphical user interface (GUI) for the MATLAB Builder JA and
MATLAB Compiler products.

Desired Results Command

Start Deployment Tool GUI with the
New/Open dialog box active

deploytool (default)
or
deploytool -n

Start Deployment Tool GUI and load
project_name

deploytool project_name.prj

Start Deployment Tool command line
interface and build project_name after
initializing

deploytool -win32 -build
project_name.prj

Start Deployment Tool command line
interface and package project_name after
initializing

deploytool -package project_name.prj

Display MATLAB Help for the deploytool
command

deploytool -?

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are both true:

• You use the same MATLAB installation root (install_root) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

10-2

figToImStream

Purpose Stream out figure “snapshot” as byte array encoded in format specified,
creating signed byte array in .png format

Syntax output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)

Description The output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)
command also accepts user-defined variables for any of the input
arguments, passed as a comma-separated list

The size and position of the printed output depends on the figure’s
PaperPosition[mode] properties.

Options figToImStream('figHandle', Figure_Handle, ...) allows you to
specify the figure output to be used. The Default is the current image

figToImStream('imageFormat', [png|jpg|bmp|gif]) allows you to
specify the converted image format. Default value is png.

figToImStream('outputType', [int8!uint8]) allows you to specify
an output byte data type. int8 (signed byte) is used primarily for Java
primitive byte type; Default value is int8.

Examples Convert the current figure to a signed png byte array:

surf(peaks)
bytes = figToImStream

Convert a specific figure to an unsigned bmp byte array:

f = figure;
surf(peaks);
bytes = figToImStream('figHandle', f, ...

'imageFormat', 'bmp', ...
'outputType', 'uint8');

10-3

mcc

Purpose Invoke MATLAB Compiler

Syntax mcc -win32 [-W | -K | -S] 'java:component_name,class_name,
file1[file2...fileN]
[class{class_name:file1 [,file2,...,fileN]},...]
[-d output_dir_path]

mcc -win32 -B 'bundlefile'[:arg1, arg2, ..., argN]

Description Use the mcc command to invoke the MATLAB Compiler product either
from the MATLAB command prompt (MATLAB mode) or the DOS or
UNIX command line (standalone mode).

mcc prepares MATLAB file(s) for deployment outside of the MATLAB
environment.

Options
Note For a complete list of all mcc command options, see mcc in the
MATLAB Compiler User’s Guide documentation.

-W
The -W option is used when running mcc with the MATLAB
Builder JA product to create a class encapsulating one or more
MATLAB files.

-W String Elements Description

java: Keyword that tells the compiler the type of
component to create, followed by a colon. Specify
java: to create a Java component.

component_name Specifies the name of the component and its
namespace, which is a period-separated list, such
as companyname.groupname.component.

10-4

mcc

-W String Elements Description

class_name Specifies the name of the Java class to be
created. The default class_name is the last
item in the list specified as component_name.
file1 [file2...fileN] are MATLAB files to be
encapsulated as methods in class_name.

[class{class_name:file1
[,file2,...,fileN]},...]

Optional. Specifies additional classes that you
want to include in the component. To use this
option, you specify the class name, followed by a
colon, and then the names of the files you want to
include in the class. You can include this multiple
times to specify multiple classes.

[-d output_dir_path] Optional. Tells the builder to create a folder and
copy the output files to it. If you use mcc instead
of the Deployment Tool, the project_folder\src
and project_folder\distrib folders are not
automatically created.

Note By default, a new MCR instance is created for each instance
of each Java class in the component. Use -S to change the default.

The -S option lets you control how each Java class uses the
MCR. It tells the builder to create a single MCR when the first
Java class is instantiated. It causes all initializations to share a
single MCR instance, eliminating the startup cost associated with
spawning another MCR instance.

When using -S, note that all class instances share a single
MATLAB workspace and share global variables in the MATLAB
files used to build the component. This makes properties of a
Java class behave as static properties instead of instance-wise
properties.

10-5

mcc

-K
Directs mcc to not delete output files if the compilation ends
prematurely, due to error.

mcc’s default behavior is to dispose of any partial output if the
command fails to execute successfully.

-B
The -B option is used to simplify the command-line input.

-B
The -B option tells the builder to replace a specified file with
the command-line information it contains.

-B String Elements Description

java: Keyword that tells the compiler the type of
component to create, followed by a colon. Specify
java: to create a Java component.

bundlefile Specifies the name of the file containing predefined
component and class information.

[:arg1, arg2, ..., argN] Files or other arguments used by the bundlefile.

Examples Using -W with One Class

mcc -W 'java:com.mycompany.mycomponent,myclass'
foo.m bar.m

The example creates a Java component that has a fully qualified
package name, com.mycompany.mycomponent. The component contains
a single Java class, myclass, which contains methods foo and bar.

To use myclass, place the following statement in your code:

import com.mycompany.mycomponent.myclass;

10-6

mcc

Using -W with Additional Classes

mcc -W 'java:com.mycompany.mycomponent,myclass'
foo.m bar.m class{myclass2:foo2.m,bar2.m}

The example creates a Java component named mycomponent with two
classes:

myclass has methods foo and bar.

myclass2 has methods foo2 and bar2.

Using -B to Simplify Command Input

Suppose myoptions file contains

-W 'java:mycomponent,myclass'

In this case,

mcc -B 'myoptions' foo.m bar.m

produces the same results as

mcc -W 'java:[mycomponent,myclass]' foo.m bar.m

Using -S to Initialize a Single MCR

mcc -S -W 'java:mycomponent,myclass' foo.m bar.m

The example creates a Java component called mycomponent containing
a single Java class named myclass with methods foo and bar. (See the
first example in this table)

If and when multiple instances of myclass are instantiated in an
application, only one MCR is initialized, and it is shared by all instances
of myclass.

10-7

mcc

Note All of these command-line examples produce the
mycomponent.jar file (component jar file).

Notice that the component name used to create these files is derived
from the last item on the period-separated list that specifies the fully
qualified name of the class.

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are both true:

• You use the same MATLAB installation root (install_root) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

10-8

A

Examples

Use this list to find examples in the documentation.

A Examples

Hello World (Quick Start)
“Quick Start: Deploying a Component with the Hello World Example”
on page 1-12

Using Load and Save
“Using Load/Save Functions to Process MATLAB Data for Deployed
Applications” on page 2-19

Importing Classes
“Importing Classes ” on page 3-8

Instantiating a Java Class
“Code Fragment: Instantiating a Java Class” on page 3-9

Using MWNumericArray
“Code Fragment: Using MWNumericArray” on page 3-13

Handling Data
“Code Fragment: Passing an MWArray” on page 3-14
“Code Fragment: Passing a Java Double Object” on page 3-15
“Code Fragment: Passing an MWArray” on page 3-15
“Code Fragment: Passing Variable Numbers of Inputs” on page 3-17
“Code Fragment: Passing Array Inputs” on page 3-19
“Code Fragment: Passing a Variable Number of Outputs” on page 3-19

A-2

Automatic Data Conversion

“Code Fragment: Passing Optional Arguments with the Standard
Interface” on page 3-20
“Code Fragment: Using Java Reflection” on page 3-22
“Code Fragment: Using MWArray Query” on page 3-23
“Code Fragment: Using toType Array Methods” on page 3-25
“Code Fragment: Passing a Java Object into a MATLAB® Builder JA
Component” on page 3-27
“Code Fragment: Cloning an Object Inside a Builder Component” on page
3-28
“Code Fragment: Passing a Date into a Component and Getting a Date
from a Component” on page 3-30
“Returning Java Objects Using unwrapJavaObjectRefs” on page 3-31
“Handling Data Conversion Between Java and MATLAB” on page 3-54
“Code Fragment: Signatures Generated for the myprimes Example” on
page 9-16

Automatic Data Conversion
“Code Fragment: Automatic Data Conversion” on page 3-14
“Phonebook Example” on page 4-28

Calling MWArray Methods
“Code Fragment: Calling MWArray Methods” on page 3-16

Handling Errors
“Code Fragment: Handling an Exception in the Called Function” on page
3-35
“Code Fragment: Handling an Exception in the Calling Function” on page
3-36
“Code Fragment: Catching General Exceptions” on page 3-38
“Code Fragment: Catching Multiple Exception Types” on page 3-38

A-3

A Examples

Handling Memory
“Code Fragment: Using dispose” on page 3-42
“Code Fragment: Using try-finally to Ensure Resources Are Freed” on
page 3-43

Supplying Run-Time Configuration Information for Parallel
Computing Toolbox Applications

“Example: Supplying Run-Time Configuration Information for Parallel
Computing Toolbox Applications” on page 3-46

Ensuring a Consistent GUI Appearance
“Code Fragment: Setting DisableSetLookAndFeel” on page 3-56

COM Components
“Blocking Execution of a Console Application that Creates Figures” on
page 3-58

Using waitForFigures to Block Execution of a Console
Application

“Code Fragment: Using waitForFigures to Block Execution of a Console
Application” on page 3-59

Sample Applications (Java)
“Plot Example” on page 4-2

A-4

Working with WebFigures

“Spectral Analysis Example” on page 4-9
“Matrix Math Example” on page 4-16
“Optimization Example” on page 4-37
“Web Application Example” on page 4-48

Working with WebFigures
“Quick Start: Implementing a Custom WebFigure” on page 5-9
“Installing WebFigureService” on page 5-19
“Getting the WebFigure Object from Your Method” on page 5-20
“Attaching a WebFigure” on page 5-21
“Getting an Embeddable String That References a WebFigure Attached to
a Cache” on page 5-26

Creating and Modifying a MATLAB Figure
“Creating and Modifying a MATLAB Figure” on page 6-3

Working with Figures
“Working with Figures” on page 6-6

Working with Images
“Working with Images” on page 6-7

Using RMI
“Running the Client and Server on a Single Machine” on page 7-5
“Running the Client and Server on Separate Machines” on page 7-9

A-5

A Examples

A-6

B

Application Deployment
Glossary

B Application Deployment Glossary

Glossary
A current listing of Application Deployment terms follows:

Glossary

A

Add-in— A Microsoft Excel add-in is an executable piece of code that can be
actively integrated into a Microsoft Excel application. Add-ins are front-ends
for COM components, usually written in some form of Microsoft® Visual
Basic®.

API — Application program interface. An implementation of the proxy
software design pattern. See MWArray.

Application — An end user-system into which a deployed functions or
solution is ultimately integrated. Typically, the end goal for the Deployment
customer is integration of a deployed MATLAB function into a larger
enterprise environment application. The deployment products prepare
the MATLAB function for integration by wrapping MATLAB code with
enterprise-compatible source code, such as C, C++, C# (.NET), F#, and Java
code.

Assembly— An executable bundle of code, especially in .NET. For example,
after building a deployable .NET component with MATLAB Builder NE,
the .NET developer integrates the resulting .NET assembly into a larger
enterprise C# application. See Executable.

B

Binary — See Executable.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other
object-oriented languages that is a prototype for an object in an object-oriented
language. It is analogous to a derived type in a procedural language. A class

B-2

Glossary

is a set of objects which share a common structure and behavior. Classes
relate in a class hierarchy. One class is a specialization (a subclass) of another
(one of its superclasses) or comprises other classes. Some classes use other
classes in a client-server relationship. Abstract classes have no members, and
concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler terminology, to compile a component
involves generating a binary that wraps around MATLAB code, enabling it to
execute in various computing environments. For example, when MATLAB
code builds with MATLAB Builder JA, a Java wrapper provides Java code
that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Builder EX, the executable back-end code
behind a Microsoft Excel add-in. In MATLAB Builder NE, an executable
component, to be integrated with Microsoft COM applications.

Component — In MATLAB, a generic term used to describe the wrappered
MATLAB code produced by MATLAB Compiler. You can plug these
self-contained bundles of code you plug into various computing environments.
The wrapper enables the compatibility between the computing environment
and your code.

Console application — Any application that is executed from a system
command prompt window. If you are using a non-Windows operating system,
console applications are often referred to as standalone applications.

CTF archive (Component Technology File)— The Component Technology File
(CTF) archive is embedded by default in each generated binary by MATLAB
Compiler. It houses the deployable package. All MATLAB-based content in
the CTF archive uses the Advanced Encryption Standard (AES) cryptosystem.
See “Additional Details” in the MATLAB Compiler User’s Guide.

D

Data Marshaling — Data conversion, usually from one type to another.
Unless a MATLAB deployment customer is using type-safe interfaces, data
marshaling—as from mathematical data types to MathWorks® data types
such as represented by the MWArray API—must be performed manually, often
at great cost.

B-3

B Application Deployment Glossary

Deploy— The act of integrating a component into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

DLL — Dynamic link library. Microsoft’s implementation of the shared
library concept for Windows. Using DLLs is much preferred over the previous
technology of static (or non-dynamic) libraries, which had to be manually
linked and updated.

E

Executable— An executable bundle of code, made up of binary bits (zeros and
ones) and sometimes called a binary.

H

Helper files — Files that support the main file or the file that calls all
supporting functions. Add resources that depend upon the function that
calls the supporting function to the Shared Resources and Helper Files
section of the Deployment Tool GUI. Other examples of supporting files or
resources include:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

• Code you want to remain private

• Code from other programs that you want to compile and link into the
main file

I

Integration — Combining a deployed component’s functionality with
functionality that currently exists in an enterprise application. For example,
a customer creates a mathematical model to forecast trends in certain
commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance)
the deployed financial model must be integrated with existing C# applications,
run in the .NET enterprise environment. Integration is usually performed by
an IT developer, rather than a MATLAB Programmer, in larger environments.

B-4

Glossary

J

JAR — Java archive. In computing software, a JAR file (or Java ARchive)
aggregates many files into one. Software developers generally use JARs
to distribute Java applications or libraries, in the form of classes and
associated metadata and resources (text, images, etc.). Computer users can
create or extract JAR files using the jar command that comes with a Java
Development Kit (JDK).

JDK— The Java Development Kit is a free Sun Microsystems product which
provides the environment required for programming in Java. The JDK is
available for various platforms, but most notably Sun Solaris and Microsoft
Windows. To build components with MATLAB Builder JA, download the JDK
that corresponds to the latest version of Java supported by MATLAB.

JRE— Java Run-Time Environment is the part of the Java Development Kit
(JDK) required to run Java programs. It comprises the Java Virtual Machine,
the Java platform core classes, and supporting files. It does not include the
compiler, debugger, or other tools present in the JDK. The JRE is the smallest
set of executables and files that constitute the standard Java platform.

M

Magic Square— A square array of integers arranged so that their sum is the
same when added vertically, horizontally, or diagonally.

Marshaling — See Data Marshaling.

mbuild— MATLAB Compiler command that invokes a script which compiles
and links C and C++ source files into standalone applications or shared
libraries. For more information, see the mbuild function reference page.

mcc — The MATLAB command that invokes MATLAB Compiler. It is the
command-line equivalent of using the Deployment Tool GUI. See the mcc
reference page in the MATLAB Compiler User’s Guide for the complete list
of options available. Each builder product has customized mcc options. See
the respective builder documentation for details.

MCR — The MATLAB Compiler Runtime is an execution engine made
up of the same shared libraries. MATLAB uses these libraries to enable

B-5

B Application Deployment Glossary

the execution of MATLAB files on systems without an installed version of
MATLAB. To deploy a component, you package the MCR along with it. Before
you use the MCR on a system without MATLAB, run the MCR installer.

MCR installer — An installation program run to install the MATLAB
Compiler Runtime on a development machine that does not have an installed
version of MATLAB. Find out more about the MCR installer by reading
“Target or End-User Installation Without MATLAB Using the MATLAB
Compiler Runtime (MCR)”.

mxArray interface — The MATLAB data type containing all MATLAB
representations of standard mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface
(API) for exchanging data between your application and MATLAB. Using
MWArray, you marshal data from traditional mathematical types to a form
that can be processed and understood by MATLAB data type mxArray. There
are different implementations of the MWArray proxy for each application
programming language.

P

Package— The act of bundling the deployed component, along with the MCR
and other files, for rollout to users of the MATLAB deployment products.
After running the packaging function of the Deployment Tool, the package
file resides in the distrib subfolder. On Windows®, the package is a
self-extracting executable. On platforms other than Windows, it is a .zip file.
Use of this term is unrelated to Java Package.

Program— A bundle of code that is executed to achieve a purpose. Programs
usually are written to automate repetitive operations through computer
processing. Enterprise system applications usually consist of hundreds or
even thousands of smaller programs.

Proxy — A software design pattern typically using a class, which functions
as an interface to something else. For example, MWArray is a proxy for
programmers who need to access the underlying type mxArray.

S

B-6

Glossary

Shared Library— Groups of files that reside in one space on disk or memory
for fast loading into Windows applications. Dynamic-link libraries (DLLs) are
Microsoft’s implementation of the shared library concept in for Microsoft
Windows.

Shared MCR Instance — When using MATLAB Builder NE, you can create
a shared MCR instance, also known as a singleton. The builder creates
a single MCR instance for each MATLAB Builder NE component in an
application. You can reuse this instance by sharing it among all subsequent
class instances within the component. Such sharing results in more efficient
memory usage and eliminates the MCR startup cost in each subsequent class
instantiation. All class instances share a single MATLAB workspace and
share global variables in the MATLAB files used to build the component.

Standalone application — Programs that are not part of a bundle of linked
libraries (as in shared libraries). Standalones are not dependent on operating
system services and can be accessed outside of a shared network environment.
Standalones are typically .exes (EXE files) in the Windows run-time
environment.

System Compiler — A key part of Interactive Development Environments
(IDEs) such as Microsoft® Visual Studio®. Before using MATLAB Compiler,
select a system compiler using the MATLAB command mbuild -setup.

T

Type-safe interface — An API that minimizes explicit type conversions
by hiding the MWArray type from the calling application. Using type-safe
interfaces, for example, .NET Developers work directly with familiar native
data types. You can avoid performing tedious MWArray data marshaling by
using type-safe interfaces.

W

WAR — Web Application ARchive. In computing, a WAR file is a JAR file
used to distribute a collection of JavaServer pages, servlets, Java classes,
XML files, tag libraries, and static Web pages (HTML and related files) that
together constitute a Web application.

B-7

B Application Deployment Glossary

WCF—Windows Communication Foundation. The Windows Communication
Foundation™ (or WCF) is an application programming interface in the .NET
Framework for building connected, service-oriented, Web-centric applications.
WCF is designed in accordance with service oriented architecture principles to
support distributed computing where services are consumed. Clients consume
multiple services that can be consumed by multiple clients. Services are
loosely coupled to each other.

Webfigure— A MathWorks representation of a MATLAB figure, rendered on
the Web. Using the WebFigures feature, you display MATLAB figures on a
Web site for graphical manipulation by end users. This enables them to use
their graphical applications from anywhere on the Web, without the need to
download MATLAB or other tools that can consume costly resources.

Windows standalone application—Windows standalones differ from regular
standalones in that Windows standalones suppress their MS-DOS window
output. The equivalent method to specify a Windows standalone target on
the mcc command line is “-e Suppress MS-DOS Command Window” If you are
using a non-Windows operating system, console applications are referred to
as standalone applications.

B-8

Index

IndexSymbols and Numerics
64–bit Mac Applications

how to run 1-40

A
Accessibility

DLLs to add to path enabling 9-3
Advanced Encryption Standard (AES)

cryptosystem 2-7
API

data conversion classes 3-13
arguments

optional 3-16
standard interface 3-20

optional inputs 3-17
optional outputs 3-19
passing 3-13

array inputs
passing 3-19

Assistive technologies
DLLs to add to path enabling 9-3

B
build output

componentLibInfo.java 1-22
build process 2-5

C
calling interface

standard 9-14
calling methods 1-39
checked exceptions

exceptions
checked 3-34

in called function 3-35
in calling function 3-36

classes

API utility 3-13
calling methods of a 1-39
creating an instance of 3-9
integrating 1-38

classpath variable 9-5
command line

differences between command-line and
GUI 2-4

Compiler
security 2-7

compiling
complete syntactic details 10-4

Component Technology File (CTF) 2-7
concepts

data conversion classes 1-40
project 1-23

converting characters to MATLAB char
array 9-10

converting data 3-14
Java to MATLAB 9-9
MATLAB to Java 9-11

converting strings to MATLAB char array 9-10
create phonebook example 4-28
create plot example 4-2
creating objects 3-9
CTF (Component Technology File) archive 2-7
CTF Archive

Controlling management and storage
of. 3-63

Embedded option (default) 1-26
CTF file 2-7

D
data conversion 3-14

characters, strings 9-10
example of 4-28
Java to MATLAB 9-9
MATLAB to Java 9-11
rules for Java components 9-9

Index-1

Index

unsigned integers 9-12
data conversion rules 3-54
Dependency Analysis Function 2-5 to 2-6
depfun 2-5 to 2-6
Deployment Tool

differences between command-line and
GUI 2-4

Starting from the command line 10-2
deploytool

differences between command-line and
GUI 2-4

DLLs 2-6
depfun 2-6

E
environment variables

classpath 9-5
java_home 9-4
ld_library_path 9-7
path 9-7
setting 9-4

error handling 3-34
example applications

Java 4-1
examples 4-28

Java create plot 4-2
exceptions 3-34

catching 3-38
checked

in called function 3-35
in calling function 3-36

general 3-38
unchecked 3-37

F
Figures

Keeping open by blocking execution of
console application 3-58

finalization 3-44
freeing native resources

try-finally 3-43

G
garbage collection 3-41

I
images 3-55
integrating classes 1-38

J
JAR files

MATLAB Builder JA’s use of 1-26
Java application

sample application
usemyclass.java 3-11

writing 4-1
Java classes 1-16
Java component

instantiating classes 3-9
Java examples 4-1
specifying 3-8

Java reflection 3-22
Java to MATLAB data conversion 9-9
java_home variable 9-4
JVM 3-41

L
ld_library_path variable 9-7
LibInfo.java 1-22
limitations 9-3

platform-specific 3-8
Limitations 1-3
Load function 2-19
loadlibrary

(MATLAB function)

Index-2

Index

Use of 2-17

M
MAT files 2-19
MATLAB Builder for Java

system requirements 9-2
MATLAB Builder JA

example of deploying 1-12
introduction 1-2

MATLAB Compiler
build process 2-5
syntax 10-4

MATLAB Compiler Runtime (MCR)
defined 1-36

MATLAB Component Runtime (MCR)
Administrator Privileges, requirement

of 1-36
Version Compatibility with MATLAB 1-36

MATLAB data files 2-19
MATLAB file

encrypting 2-7
MATLAB file method

myprimes.m 3-11
MATLAB Function Signatures

Application Deployment product processing
of 2-15

MATLAB objects
no support for 1-3

MATLAB to Java data conversion 9-11
matrix math example

Java 4-16
mcc

differences between command-line and
GUI 2-4

MCOS Objects
no support for 1-3

MCR 1-36
MCR Component Cache

How to use 3-63

MCR Installer 1-36
and setting system paths 1-37
Including with deployment package 1-36

memory
preserving 3-41

memory management
native resources 3-41

method signatures
standard interface

method signatures 3-15 9-13
methods

adding 4-9
calling 1-39
error handling 3-34
of MWArray 3-16 3-54

MEX-files 2-5 to 2-6
depfun 2-6

MWArray 3-13
MWarray methods 3-16 3-54
MWArray query

return values 3-23 3-25
MWComponentOptions 3-63
mwjavaobjectref 3-27
MWStructArray

example of returning from generated
component 4-28

myprimes.m 3-11

N
native resources

dispose 3-42
finalizing 3-44

O
objects

creating 3-9
operating system issues 3-8
optional arguments 3-16

Index-3

Index

input 3-17
output 3-19
standard interface 3-20

P
Parallel Computing Toolbox

configuring 3-46
Example using 3-46
Supplying run-time configuration

information for 3-46
passing arguments 3-13
passing data

matlab to java 3-7
path variable 9-7
Platform independence

MEX files 3-61
platform issues 3-8
portability 3-8

ensuring for MEX files 3-61
project

elements of 1-23

R
Renderers

in WebFigures 5-2
requirements

system 9-2
resource management 3-41
return values

handling 3-21
java reflection 3-22
MWArray query 3-23 3-25

S
Save function 2-19

security 2-7
setting environment variables 9-4
shared libraries 2-6

depfun 2-6
shared library 2-6
standard interface 9-14

passing optional arguments 3-20
Structs StructArrays

Adding fields 3-6
System paths 1-37

setting of 1-37
system requirements 9-2
System.exit

Alternatives to using 3-40
Reasons to avoid using 3-40

T
try-finally 3-43

U
unchecked exceptions 3-37
usage information

getting started 1-1
sample Java applications 4-1

W
waitForFigures 3-58
Web Figure

WebFigure 5-2
WebFigures

Supported renderers 5-2

Index-4

	toc
	Getting Started
	Product Overview
	MATLAB Compiler Extension
	How the MATLAB Compiler and MATLAB Builder JA Products Work Toge
	How Does Component Deployment Work?
	Limitations of Support

	Before You Use MATLAB Builder JA
	Your Role in the Java Application Deployment Process
	What You Need to Know
	Required Products
	Configuring Your Environment
	Verifying Your Java Environment
	Setting Up Your Java Environment

	Quick Start: Deploying a Component with the Hello World Example
	About the Hello World Example
	Before Running the Hello World Example
	The Hello World Example
	Building the Java Component
	What Is a MATLAB Builder JA Project?
	What Is a MATLAB Builder JA Component?
	Deploying Hello World On a Computer with MATLAB, MATLAB Compiler
	Deploying Hello World On a Computer with Only the MATLAB Compile

	The Magic Square Example
	About This Example
	What Is a Magic Square?
	How Do I Access the Examples?

	Magic Square Example: MATLAB Programmer Tasks
	Copying the Example Files
	Testing the MATLAB File You Want to Deploy
	Creating the Magic Square Java Component
	What Happens in the Build Process
	Anatomy of a MATLAB Builder JA Project

	Packaging the Magic Square Java Component (Optional)
	What Happens in the Packaging Process?
	How Does the MATLAB Builder JA Product Use JAR Files?

	Copy the Package You Created (Optional)

	Magic Square Example: Java Developer Tasks
	Gathering Files Needed for Deployment
	Testing the Java Component in a Java Application
	Using mcrroot to Test Against the MCR

	Target or End-User Installation Without MATLAB Using the MATLAB
	About the MCR and the MCR Installer
	Before You Install the MCR
	Including the MCR installer with Your Deployment Package
	Installing the MCR and Setting System Paths
	For More Information

	Integrating Java Classes Generated by MATLAB into a Java Applica
	Calling Class Methods from Java
	Handle Data Conversion as Needed
	How MATLAB Builder JA Handles Data

	Build and Test
	Running a 64-Bit Mac Application

	Next Steps

	MATLAB Code Deployment
	The MATLAB Application Deployment Products
	The Application Deployment Products and the Deployment Tool
	What Is the Difference Between the Deployment Tool and the mcc C
	How Does MATLAB Compiler Software Build My Application?
	What You Should Know About the Dependency Analysis Function (dep
	Compiling MEX-Files, DLLs, or Shared Libraries
	The Role of the Component Technology File (CTF Archive)
	Additional Details

	Guidelines for Writing Deployable MATLAB Code
	Compiled Applications Do Not Process MATLAB Files at Run-Time
	Do Not Rely on Changing Directory or Path to Control the Executi
	Use ismcc and isdeployed Functions To Execute Deployment-Specifi
	Gradually Refactor Applications That Depend on Noncompilable Fun
	Do Not Create or Use Nonconstant Static State Variables

	How the Deployment Products Process MATLAB Function Signatures
	The MATLAB Function Signature
	MATLAB Programming Basics
	Creating a Deployable MATLAB Function
	Taking Inputs into a Function

	MATLAB Library Loading in Compiled MATLAB Functions
	MATLAB Data Files Using Load and Save
	Using Load/Save Functions to Process MATLAB Data for Deployed Ap
	ex_loadsave.m

	Programming
	About the MATLAB Builder JA API
	Understanding the MATLAB Builder JA API Data Conversion Classes
	Overview of Classes and Methods in the Data Conversion Class Hie
	Advantage of Using Data Conversion Classes

	Automatic Conversion to MATLAB Types
	Understanding Function Signatures Generated by the MATLAB Builde
	Understanding MATLAB Function Signatures
	Overloaded Methods in Java That Encapsulate MATLAB Code

	Adding Fields to Data Structures and Data Structure Arrays
	Returning Data from MATLAB to Java

	Importing Classes
	Creating an Instance of the Class
	What Is an Instance?
	Code Fragment: Instantiating a Java Class
	myprimes Function

	Passing Arguments to and from Java
	Format
	Manual Conversion of Data Types
	Code Fragment: Using MWNumericArray

	Automatic Conversion to a MATLAB Type
	Code Fragment: Automatic Data Conversion
	Code Fragment: Passing a Java Double Object
	Code Fragment: Passing an MWArray
	Code Fragment: Calling MWArray Methods
	Changing the Default by Specifying the Type

	Specifying Optional Arguments
	Code Fragment: Passing Variable Numbers of Inputs
	Code Fragment: Passing a Variable Number of Outputs

	Handling Return Values
	Code Fragment: Using Java Reflection
	Code Fragment: Using MWArray Query
	Code Fragment: Using toType Array Methods

	Passing Java Objects by Reference
	MATLAB Array
	Wrappering and Passing Java Objects to MATLAB Functions with MWJ
	Code Fragment: Passing a Java Object into a MATLAB Builder JA Co
	Code Fragment: Cloning an Object Inside a Builder Component
	Code Fragment: Passing a Date into a Component and Getting a Dat
	Returning Java Objects Using unwrapJavaObjectRefs
	Optimization Example Using MWJavaObjectRef

	Handling Errors
	Error Overview
	Handling Checked Exceptions
	Code Fragment: Handling an Exception in the Called Function
	Code Fragment: Handling an Exception in the Calling Function

	Handling Unchecked Exceptions
	Code Fragment: Catching General Exceptions
	Code Fragment: Catching Multiple Exception Types

	Alternatives to Using of System.exit

	Managing Native Resources
	What Are Native Resources?
	Using Garbage Collection Provided by the JVM
	Using the dispose Method
	Code Fragment: Using dispose
	Code Fragment: Using try-finally to Ensure Resources Are Freed

	Overriding the Object.Finalize Method

	Improving Data Access Using the MCR User Data Interface and MATL
	Example: Supplying Run-Time Configuration Information for Parall
	Step 1: Write Your PCT Code
	Step 2: Set the Parallel Computing Toolbox Configuration
	Step 3: Compile Your Function with the Deployment Tool or the Co
	Step 4: Write the Java Driver Application

	Dynamically Specifying Run-Time Options to the MCR
	What Run-Time Options Can You Specify?
	Setting and Retrieving MCR Option Values Using MWApplication
	Specifying Run-Time Options Using MWMCROption

	Handling Data Conversion Between Java and MATLAB
	Overview
	Calling MWArray Methods
	Specifying the Type

	Creating Buffered Images from a MATLAB Array

	Setting Java Properties
	How to Set Java System Properties
	Ensuring a Consistent GUI Appearance
	Code Fragment: Setting DisableSetLookAndFeel

	Blocking Execution of a Console Application that Creates Figures
	waitForFigures Method
	Code Fragment: Using waitForFigures to Block Execution of a Cons

	Ensuring Multi-Platform Portability
	Using MCR Component Cache and MWComponentOptions
	MWComponentOptions
	Selecting Options
	Setting Options
	Example: Enabling MCR Component Cache, Utilizing CTF Content Alr

	Learning About Java Classes and Methods by Exploring the Javadoc

	Sample Java Applications
	Plot Example
	Purpose
	Procedure
	createplot.java

	Spectral Analysis Example
	Purpose
	Procedure
	powerspect.java

	Matrix Math Example
	Purpose
	MATLAB Functions to Be Encapsulated
	cholesky.m
	ludecomp.m
	qrdecomp.m
	Understanding the getfactor Program
	Procedure
	Step-by-Step Procedure
	getfactor.java
	Output for the Matrix Math Example
	Output for a Sparse Matrix

	Phonebook Example
	Purpose
	Procedure
	getphone.java

	Optimization Example
	Purpose
	OptimDemo Component
	Procedure

	Web Application Example
	Example Overview
	Before You Work this Example
	Ensure You Have the Required Products
	Ensure Your Web Server Is Java Compliant
	Install the javabuilder.jar Library

	Downloading the Demo Files
	Contents of the Demo Files

	Build Your Java Component
	Compiling Your Java Code
	Generating the Web Archive (WAR) File
	Running the Web Deployment Demo
	Using the Web Application

	Deploying a Java Component Over the Web
	About the WebFigures Feature
	Supported Renderers for WebFigures

	Preparing to Implement WebFigures for MATLAB Builder JA
	Your Role in the WebFigure Deployment Process
	What You Need to Know to Implement WebFigures
	Required Products
	MATLAB Programmer
	Java Developer

	Assumptions About the Examples
	Set DISPLAY on UNIX Systems

	Quick Start: Implementing a Custom WebFigure
	Overview
	Setting Up the Web Server
	Creating the Default WebFigure
	Behind the Scenes: How a WebFigure Is Referenced

	Interacting with the Default WebFigure
	Creating a Custom WebFigure

	Advanced Configuration of a WebFigure
	Overview
	How Do WebFigures Work?
	Installing WebFigureService
	Getting the WebFigure Object from Your Method
	Attaching a WebFigure
	Attaching to the Session Cache
	Attaching to the Application Cache

	Using the WebFigure JSP Tag to Reference a WebFigure
	Initializing the JSP Tag
	Attributes of a WebFigure Tag

	Getting an Embeddable String That References a WebFigure Attache

	Working with MATLAB Figures and Images
	Your Role in Working with Figures and Images
	Creating and Modifying a MATLAB Figure
	Preparing a MATLAB Figure for Export
	Changing the Figure (Optional)
	Alter Visibility
	Change Background Color
	Alter Orientation and Size

	Exporting the Figure
	WebFigure
	Image Data

	Cleaning Up the Figure Window
	Example: Modifying and Exporting Figure Data
	WebFigure
	Image Data

	Working with MATLAB Figure and Image Data
	For More Comprehensive Examples
	Working with Figures
	Getting a Figure From a Deployed Component

	Working with Images
	Getting Encoded Image Bytes from an Image in a Component
	Java
	Getting a Buffered Image in a Component
	Java

	Creating Scalable Web Applications Using RMI
	Using Remote Method Invocation (RMI)
	Before You Use RMI
	Running the Client and Server on a Single Machine
	Running the Client and Server on Separate Machines
	Using Native Java with Cell Arrays and Struct Arrays
	Why Use Native Type Cell Arrays and Struct Arrays?
	Using Native Types Does Not Require a Client-Side MCR

	Before You Use Native Type Data Marshaling with Cells and Struct
	The Native Java Cell and Struct Example
	Before You Run the Example
	Running the Example

	For More RMI Examples

	Troubleshooting
	Common MATLAB Builder JA Error Messages
	Exception in thread "main" java.lang.UnsatisfiedLinkError: Faile

	Reference Information for Java
	Requirements for the MATLAB Builder JA Product
	System Requirements
	Path Modifications Required for Accessibility
	Limitations and Restrictions
	Settings for Environment Variables (Development Machine)
	JAVA_HOME Variable
	Java CLASSPATH Variable
	Native Library Path Variables

	Data Conversion Rules
	Java to MATLAB Conversion
	MATLAB to Java Conversion
	Unsupported MATLAB Array Types

	Programming Interfaces Generated by the MATLAB Builder JA Produc
	APIs Based on MATLAB Function Signatures
	Standard API
	mlx API
	Code Fragment: Signatures Generated for the myprimes Example

	MWArray Class Specification

	Function Reference
	Examples
	Hello World (Quick Start)
	Using Load and Save
	Importing Classes
	Instantiating a Java Class
	Using MWNumericArray
	Handling Data
	Automatic Data Conversion
	Calling MWArray Methods
	Handling Errors
	Handling Memory
	Supplying Run-Time Configuration Information for Parallel Comput
	Ensuring a Consistent GUI Appearance
	COM Components
	Using waitForFigures to Block Execution of a Console Application
	Sample Applications (Java)
	Working with WebFigures
	Creating and Modifying a MATLAB Figure
	Working with Figures
	Working with Images
	Using RMI

	Application Deployment Glossary
	Glossary
	Glossary

	Index

	tables
	 Application Deployment Roles, Tasks, and References
	Systems Administrator
	MATLAB Programmer
	MATLAB Programmer
	Key Tasks for the MATLAB Programmer
	Java Developer
	Key Tasks for the Java Developer
	MATLAB Programmer
	The MATLAB Suite of Application Deployment Products
	Information on CTF Archive Embedding/Extraction and Component Ca
	WebFigures for MATLAB Builder JA Deployment Roles, Responsibilit
	MATLAB Programmer
	MATLAB Programmer
	Java Developer
	Java Developer
	WebFigure Tag Attributes and Their Default Values
	MATLAB Programmer
	Front-End Web Developer
	Server Administrator
	Middle-Tier Developer
	Java to MATLAB Conversion Rules
	MATLAB to Java Conversion Rules

